https://jp.mathworks.com/help/matlab/examples/using-fft.html
9 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
FUJITA HIROYASU
el 21 de Mzo. de 2017
Comentada: Rik
el 22 de Mzo. de 2017
サンプルについての質問なんですが、
1.関数 fft を使用して、チューリッヒ データのフーリエ変換を行うときに、データの和が保存されている、出力の最初の要素を削除していますが、実際に他のデータでFFTをかける場合にも最初のデータには和が保存されているのでしょうか。 y = fft(relNums); y(1) = [];
2.以下の文章とソースの関係で質問なんですが、
2.1 より意味のある係数の尺度は振幅の二乗です。これはべき乗の尺度です。 これは、以下に該当する認識ですが正しいでしょうか。 power = abs(y).^2
2.2 係数の半分は振幅内で繰り返されるため、係数の半分のべき乗を計算するだけで済みます。 これは、以下に該当する認識ですが正しいでしょうか。 n/2
2.3 以下がどこからどういった経緯で出てきたのか教えていただけないでしょうか。 maxfreq = 1/2; % maximum frequency
2 comentarios
Rik
el 21 de Mzo. de 2017
I would recommend that you translate your question to English. Google Translate doesn't work well enough so I can help you.
Respuesta aceptada
Rik
el 22 de Mzo. de 2017
I am not a signal processing expert, but here goes.
Regarding questions 1 and 2: The first element will contain information about the magnitude, as it is the 0 Hz component. This is true for all Fourier transformed data sets. If you have a relatively high mean value, your data may be easier to visually analyze if you remove the first value. Removing the first value should be more or less equivalent to data=data-mean(data) prior to the fft.
Regarding question 3: Yes.
Regarding question 4: As far as I am aware, yes. That is the reason why they combine these two steps in the example: n = length(y); power = abs(y(1:floor(n/2))).^2;
Regarding question 5: This drops out because of the Nyquist criterion. You can only meaningfully detect frequencies up to half of your sample frequency.
Hope this helps.
2 comentarios
Rik
el 22 de Mzo. de 2017
y is the Fourier transform, so n is the number of frequencies for which the magnitude was calculated.
The n/2 is related to the point that only half of the results are used for the power spectrum. I expect you are correct in your statement that the Nyquist criterion only matters for that maxfreq term.
The frequency is how many times an event occurs in a given unit of time, the period is the time between events. So the period and the frequency are each-others reciprocal.
Note: if my answer helped you, please mark it as accepted answer. We will both get reputation points and it will be easier for others with the same question to find the answer.
Más respuestas (0)
Ver también
Categorías
Más información sobre Linear Model Identification en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!