does matlab have a problem with modular integer arithmetic?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
>> x = -78907292 * 1941317253; >> y = 2^32 +1
y =
4.29496729700000e+009
>> x
x =
-153.184087347109e+015
>> mod(x,y)
ans =
1.51932828600000e+009
correct answer:
= 1519328274 (python) and others...
1 comentario
Respuestas (3)
Walter Roberson
el 24 de Mzo. de 2017
Try
X = int64(-78907292) * int64(1941317253)
Remember that the default data type is double not one of the integer data classes.
0 comentarios
Roger Stafford
el 24 de Mzo. de 2017
Editada: Roger Stafford
el 24 de Mzo. de 2017
As has so often been pointed out in this forum, matlab’s “double” in everyone’s computers possesses a significand (mantissa) consisting of 53 binary digits. Consequently it is incapable of representing the above product -78907292*1941317253 exactly. For that reason the errors it must necessarily make will certainly be manifest using the mod function as given here. Have a heart! Or better still use the symbolic forms of numbers for such calculations.
0 comentarios
alexander sharp
el 24 de Mzo. de 2017
1 comentario
Walter Roberson
el 24 de Mzo. de 2017
MATLAB frequently allows people to use abbreviated forms. In MATLAB your line
x = -78907292 * 1941317253;
is considered to be an abbreviated form of
x = times(-78907292.0, 1941317253.0);
An integer might, as you say, be an integer, but you did not enter any integers.
Ver también
Categorías
Más información sobre Logical en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!