Evaluating a matrix at different time steps

7 visualizaciones (últimos 30 días)
Vipin  Padinjarath
Vipin Padinjarath el 29 de Mzo. de 2017
Comentada: Star Strider el 29 de Mzo. de 2017
Dear all, I have a matrix which is a transition matrix. I need to calculate the time evolution of the associated probability distribution. The matrix is raised to 't', the time variable and I want to evaluate the matrix at different time steps. Is it possible in Matlab? The code to generate the square matrix is given below which is working well for a given value if t.
if true
N=3;
w=0.2;
t=1;
G=zeros(N);
for j=1:N %rows
for n=1:N %columns
for k=1:N %summation
G(j,n)=G(j,n)+1/N*(((1-w)+w*cos((2*pi*k)/N)).^t*cos((2*pi*(j-n)*k)/N));
end
end
end
disp(G)
end

Respuesta aceptada

Star Strider
Star Strider el 29 de Mzo. de 2017
Editada: Andrei Bobrov el 29 de Mzo. de 2017
Add a separate loop for ‘t’, and a third dimension to your ‘G’ matrix:
N=3;
w=0.2;
tv = linspace(0, 10, 10); % Define Time Vector
G=zeros(N,N,length(tv)); % Preallocate Here
for t = 1:length(tv) % ‘Time’ Loop
for j=1:N %rows
for n=1:N %columns
for k=1:N %summation
G(j,n,t)=G(j,n,t)+1/N*(((1-w)+w*cos((2*pi*k)/N)).^tv(t)*cos((2*pi*(j-n)*k)/N));
end
end
end
% disp(G)
end
Define the vector of times you want to evaluate your matrix in ‘tv’. The rest of the code will then work. Each ‘page’ (third dimension elements) of ‘G’ will be ‘G’ at the corresponding times.
Also, move the preallocation step to be before the loop! Otherwise, it resets all previous values of ‘G’ to zero.
  6 comentarios
Vipin  Padinjarath
Vipin Padinjarath el 29 de Mzo. de 2017
It works perfectly now!! Cheers!Thanks again!!
Star Strider
Star Strider el 29 de Mzo. de 2017
As always, my pleasure!

Iniciar sesión para comentar.

Más respuestas (1)

Andrei Bobrov
Andrei Bobrov el 29 de Mzo. de 2017
Editada: Andrei Bobrov el 29 de Mzo. de 2017
R2016b and later
N = 3;
w = 0.2;
k = 1:N;
k = reshape(k,1,1,1,[]);
jj = (1:N)';
n = 1:N;
t = (0:10);
t = reshape(t,1,1,[]);
g = ((1-w+w*cos(2*pi*k/N)).^t.*cos(2*pi*(jj-n).*k/N))/N;
G = sum(g,4);
R2016a and earlier
N = 3;
w = 0.2;
k = 1:N;
k = reshape(k,1,1,1,[]);
jj = (1:N)';
n = 1:N;
t = (0:10);
t = reshape(t,1,1,[]);
g0 = cos(bsxfun(@times,bsxfun(@minus,jj,n),2*pi*k)/N);
g1 = bsxfun(@power,1-w+w*cos(2*pi*k/N),t);
g = bsxfun(@times,g0,g1)/N;
G = sum(g,4);
  1 comentario
Vipin  Padinjarath
Vipin Padinjarath el 29 de Mzo. de 2017
Thank you Andrei Bobrov. But for my standards, this is too much. I don't understand much of it. But will learn for sure. Thanks again.

Iniciar sesión para comentar.

Categorías

Más información sobre Multidimensional Arrays en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by