How can I plot a confusion matrix for a multi-class or non-binary classification problem?

16 visualizaciones (últimos 30 días)
I want to make a plot similar to the confusion matrix created in the Classification Learner app. This can make a confusion matrix for a multi-class or non-binary classification problem. In addition, it can plot things such as a True Positive or False Negative rates.
How can I do this?

Respuesta aceptada

MathWorks Support Team
MathWorks Support Team el 5 de Jul. de 2017
Similar to the binary or two-class problem, this can be done using the "plotconfusion" function. By default, this command will also plot the True Positive, False Negative, Positive Predictive, and False Discovery rates in they grey-colored boxes. Please refer to the following example:
targetsVector = [1 2 1 1 3 2]; % True classes
outputsVector = [1 3 1 2 3 1]; % Predicted classes
% Convert this data to a [numClasses x 6] matrix
targets = zeros(3,6);
outputs = zeros(3,6);
targetsIdx = sub2ind(size(targets), targetsVector, 1:6);
outputsIdx = sub2ind(size(outputs), outputsVector, 1:6);
targets(targetsIdx) = 1;
outputs(outputsIdx) = 1;
% Plot the confusion matrix for a 3-class problem
plotconfusion(targets,outputs)
The class labels can be customized by setting that 'XTickLabel' and 'YTickLabel' properties of the axis:
h = gca;
h.XTickLabel = {'Class A','Class B','Class C',''};
h.YTickLabel = {'Class A','Class B','Class C',''};
h.YTickLabelRotation = 90;
  1 comentario
Michael Abboud
Michael Abboud el 6 de Jul. de 2017
I have updated the above answer to better indicate that the 'TargetsVector' contains the true class labels.
I also included a quick example in the answer showing how to add strings as a name for each class, as I think that is a great easy way to make the plot more easily interpretable

Iniciar sesión para comentar.

Más respuestas (1)

David Franco
David Franco el 23 de En. de 2018
Editada: MathWorks Support Team el 16 de Mzo. de 2018
Implementation code:
Confusion Matrix
function [] = confusion_matrix(T,Y)
M = size(unique(T),2);
N = size(T,2);
targets = zeros(M,N);
outputs = zeros(M,N);
targetsIdx = sub2ind(size(targets), T, 1:N);
outputsIdx = sub2ind(size(outputs), Y, 1:N);
targets(targetsIdx) = 1;
outputs(outputsIdx) = 1;
% Plot the confusion matrix
plotconfusion(targets,outputs)

Categorías

Más información sobre Classification en Help Center y File Exchange.

Productos


Versión

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by