How to determine instantaneous phase using complex wavelets ?

8 visualizaciones (últimos 30 días)
Ajeet Singh
Ajeet Singh el 24 de Mayo de 2017
Editada: Ajeet Singh el 24 de Mayo de 2017
I am trying to obtain the phase difference between two non-stationary signals. I have tried using both Hilbert transform and Complex Wavelet Transform. Sample codes for 2 signals x & y and corresponding output are given below:
% Using Hilbert Transform
t = linspace(0,1,2048);
x = sin(16*pi*t);
y = sin(16*pi*t+pi/6);
xh = hilbert(x);
yh = hilbert(y);
xphase = (unwrap(angle(xh)))';
yphase = (unwrap(angle(yh)))';
plot(t,rad2deg(xphase-yphase))
%Using Complex Guassian Wavelet
t = linspace(0,10,2048);
x = sin(16*pi*t);
y = sin(16*pi*t+pi/3);
xc=cwt(x,1:140,'cgau5');
yc=cwt(y,1:140,'cgau5');
lev=30;
xp=rad2deg(unwrap(angle(xc(lev,:))));
yp=rad2deg(unwrap(angle(yc(lev,:))));
figure(1)
plot(t,(xp-yp));
The phase difference using Hilbert transform is correct while Complex WT gives unusual results. How can phase between x and y be sinusoidal? I wonder if there is any mistake in the code?

Respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by