How to read multiple huge text files, the fastest way?
44 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Anand Uthaman
el 18 de Mzo. de 2011
Respondida: bim
el 25 de Dic. de 2022
Hi All,
I am quite new to Matlab and sorry for the naive question. Request your kind help on my problem as given below.
I have around 10,000 input text files to read and process in Matlab. The text file contains only numerical data but each file is around 12-15MB and hence the total size of the input is around 125~150GB.
First, I tried to use fgetl() to read each line from each file and iterate but it took very long. So I have modified the input text file format as a set of numbers separated by white spaces and used fscanf() to read to a matrix of size [1 inf]. Still it takes couple of hours to read all the 10,000 files.
I have tried to use parfor loop and ran the code in a matlabpool of cluster size 8 (the system is a linux server - 4 processors, each dual code). Even then, it takes more than 2 hours to read all the files.
Could anyone kindly let me know what is the fastest way to read this much huge data in Matlab? My requirement is to read this much data (125~150 GB) in a couple of minutes.
Note: I can change the format of the input text file to achieve the highest possible file read. But I would like to read the inputs as numbers only (not string) as during processing str2double() takes much time.
Thanks a million in advance. Expecting your expert advice.
Warm Regards
Anand Uthaman
7 comentarios
Jason Ross
el 18 de Mzo. de 2011
The way to know if you are swapping is to watch something like "top". It seems that you might want to look somewhere less than 10,000 and more than 100 to see if you can do better :)
Respuesta aceptada
Jeremy Johnson
el 18 de Mzo. de 2011
If you have total control over the file format, storing the data in a binary file format would make reading the data out of the file much faster.
6 comentarios
Más respuestas (2)
Matt Tearle
el 18 de Mzo. de 2011
If you have to read it as ASCII, your best option is textscan, which will read directly into whatever numeric format you specify ( %f for double, %d for integer, etc).
bim
el 25 de Dic. de 2022
I have been using importdata for textfiles, but it is very slow for text unless you rename all the files to '.txt'.
The function below seems to do the job for structured text files.
The structure the function can handle is shown at the bottom the function: it only works for tables of float numbers
Let me know whether this works well.
%% READTEXTFILE reads text files without any checks
% READTEXTFILE reads from file and immediately filters out the selectColumns
% READTEXTFILE can read any number of headerlines, but
% the headerlines must contain both nRows='a number' and 'nColumns=a number' in separate lines
% the lines containing nRows and nColumns must not contain any spaces
%
% parameter filename = if the selected file is not a text file, the function will fail
% the extension of the filename is ignored and does not need to be present
% parameter selectedcolumns = header names of columns to be selected from the file
% e.g., selectedcolumns = {'time', 'column_3'}
%
% The read data is returned in a struct c
% content.data = the actual data as a matrix
% content.colheaders = the headers of the remaining columns
% content.colheaders == selectedcolumns
% content.textdata == content.colheaders
%
function content=readtextfile(varargin) % filename,selectedcolumns
tic
selectedcolumns={};
if nargin>2 || nargin ==0
error('readtextfile: too many or too few arguments');
elseif nargin ==2
selectedcolumns=varargin{2};
end
filename=varargin{1};
fid = fopen(filename,'rt');
file.title = fgetl(fid);
file.nrows=string([]);
file.ncolumns=string([]);
line = string(fgetl(fid));
while line ~= "endheader"
if length(file.nrows)==0
file.nrows=regexp(line,'^nRows=(?<nrows>\d+)$','tokens','once');
end
if length(file.ncolumns)==0
file.ncolumns=regexp(line,'^nColumns=(?<ncolumns>\d+)$','tokens','once');
end
line = string(fgetl(fid));
end
file.nrows=str2num(file.nrows);
file.ncolumns=str2num(file.ncolumns);
fsColHeaders = repmat([' %s'],1,file.ncolumns);
colHeaders = textscan(fid,fsColHeaders,1,'EndOfLine','\r\n','MultipleDelimsAsOne',1); % 3rd param (N) == 1 --> read once
fsData = repmat([' %f'],1,file.ncolumns);
fileData = textscan(fid,fsData,'EndOfLine','\r\n','MultipleDelimsAsOne',1); % 3rd param (N) missing --> read until end of file
colHeaders =cellfun(@char,colHeaders,'UniformOutput',false);
[~,copiedColumns] = ismember(selectedcolumns,colHeaders);
if length(copiedColumns)>0
newMatrix= zeros(file.nrows,nnz(copiedColumns));
iNewColumns=1;
for iCopiedColumns = copiedColumns
if iCopiedColumns>0
newMatrix(:,iNewColumns) = fileData{iCopiedColumns};
% newHeaders is not necessary, since it corresponds to selectedcolumns
% but it is is helpful in checking proper operation of the function
newHeaders(:,iNewColumns) = colHeaders(iCopiedColumns);
iNewColumns=iNewColumns+1;
end
end
else
newMatrix = cell2mat(fileData);
newHeaders = colHeaders;
end
fclose(fid);
content.data = newMatrix;
content.textdata = newHeaders;
content.colheaders = newHeaders;
toc
end
% example of possible headerlines
%{
the title
nRows=437
nColumns=17
any number of lines
endheader
time column_1 column_2 column_3 ...
0.001 0.1234 0.3456 0.7891
0.002 0.2234 0.4456 0.8891
%}
0 comentarios
Ver también
Categorías
Más información sobre Data Import and Export en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!