How to perform stratified 10 fold cross validation for classification in MATLAB?

16 visualizaciones (últimos 30 días)
My implementation of usual K-fold cross-validation is pretty much like:
K = 10;
CrossValIndices = crossvalind('Kfold', size(B,2), K);
for i = 1: K
display(['Cross validation, folds ' num2str(i)])
IndicesI = CrossValIndices==i;
TempInd = CrossValIndices;
TempInd(IndicesI) = [];
xTraining = B(:, CrossValIndices~=i);
tTrain = T_new1(:, CrossValIndices~=i);
xTest = B(:, CrossValIndices ==i);
tTest = T_new1(:, CrossValIndices ==i);
end
But To ensure that the training, testing, and validating dataset have similar proportions of classes (e.g., 20 classes).I want use stratified sampling technique.Basic purpose is to avoid class imbalance problem.I know about SMOTE technique but i want to apply this one.
  3 comentarios

Iniciar sesión para comentar.

Respuesta aceptada

Tom Lane
Tom Lane el 25 de Jul. de 2017
If you have the Statistics and Machine Learning Toolbox, consider the cvpartition function. It can define stratified samples.
  3 comentarios

Iniciar sesión para comentar.

Más respuestas (1)

ashik khan
ashik khan el 18 de Nov. de 2018
What are the value of B and T_new1 ??
K = 10;
CrossValIndices = crossvalind('Kfold', size(B,2), K);
for i = 1: K
display(['Cross validation, folds ' num2str(i)])
IndicesI = CrossValIndices==i;
TempInd = CrossValIndices;
TempInd(IndicesI) = [];
xTraining = B(:, CrossValIndices~=i);
tTrain = T_new1(:, CrossValIndices~=i);
xTest = B(:, CrossValIndices ==i);
tTest = T_new1(:, CrossValIndices ==i);
end

Categorías

Más información sobre Get Started with Statistics and Machine Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by