The generalized Nyquist stability criterion

75 visualizaciones (últimos 30 días)
Khaled Abojlala
Khaled Abojlala el 16 de Ag. de 2017
Comentada: Mohamed Belkhayat el 7 de Feb. de 2026 a las 2:59
Hi I am trying to plot the Nyquist plot of MIMO system. any help please

Respuesta aceptada

Mohamed Belkhayat
Mohamed Belkhayat el 30 de Oct. de 2017
Once you have a MIMO matrix transfer function you can generate the plot by finding the eigenvalues of the matrix as a function of frequency. A 2x2 MIMO matrix transfer function will have 2 eigenvalues at every frequency point. The imaginary vs. the real part of the two eigenvalues will yield two loci that should always connect. This is the generalized Nyquist. I include a sample code for a textbook example in Multivariable Feedback Design by Maciejowski. Example 2.7. This example is limited to 2x2 but can be extended easily to higher dimensions.
  2 comentarios
Khaled Abojlala
Khaled Abojlala el 31 de Oct. de 2017
Thanks, prof. this is very helpful
Mohamed Belkhayat
Mohamed Belkhayat el 7 de Feb. de 2026 a las 2:59
Note that the 2017 file only plotted one eigen value, which was an oversight. This updated version Gnyquist2 plots both eigen values as it should and it's a bit faster. Note that in some cases the eigenvalues need to be sorted to maintain the continuity of the eign-loci. Otherwise the eign-values will trade places and it shows as a jump in the plot.

Iniciar sesión para comentar.

Más respuestas (1)

Mitul Saini
Mitul Saini el 12 de Mayo de 2018
Is it only applicable for square matrices?
  1 comentario
Andrea
Andrea el 11 de Mzo. de 2025
Editada: Andrea el 28 de Mzo. de 2025
Yes but normally the open loop K*G(s) is always square for state and output feedback, also if G(s) is not.

Iniciar sesión para comentar.

Categorías

Más información sobre Link-Level Simulation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by