Fletcher Reeves conjugate method

20 visualizaciones (últimos 30 días)
Matheus
Matheus el 17 de Ag. de 2017
Comentada: Matheus el 17 de Ag. de 2017
Hello,
My program is giving the right solution for the problem, but I believe it is doing unecessary steps. For a problem with initial point at [4 6], my code using conjugate method is doing more steps than when I try to solve the same problem using the steepest descent method.
-> Main function:
function [x_opt,f_opt,k] = conjugate_gradient (fob,g_fob,x0,tol_grad);
c0 = feval(g_fob,x0); % evaluate gradient at initial point
k = 0;
if norm(c0) < tol_grad
x_opt = x0; % optimum point
f_opt = feval(fob,x_opt); % cost function value
else
d0= -c0; % search direction
alfa0 = equal_interval_line_search(x0,d0,fob,0.5,1e-6); %line search (step size)
x1= x0+ alfa0*d0;
c1 = feval(g_fob,x1);
while norm(c1) > tol_grad
beta = (norm(c1)/norm(c0))^2;
d1= -c1+beta*d0;
alfa1 = equal_interval_line_search(x1,d1,fob,0.5,1e-6);
x2= x1+alfa1*d1;
c0=c1;
c1= feval(g_fob,x2);
d0=d1;
x1=x2;
k=k+1;
end
x_opt = x1;
f_opt = feval(fob,x_opt);
end
Cost function:
function f = fob_8_58(x);
f = 8*x(1)^2 + 8*x(2)^2 - 80*((x(1)^2+x(2)^2-20*x(2)+100)^0.5)- 80*((x(1)^2+x(2)^2+20*x(2)+100)^0.5)-5*x(1)-5*x(2);
->Gradient fuction:
function g = grad_fob_8_58(x)
g(1) = 16*x(1) - 80*x(1)/((x(1)^2+x(2)^2-20*x(2)+100)^0.5)- 80*x(1)/((x(1)^2+x(2)^2+20*x(2)+100)^0.5)-5;
g(2) =16*x(2) - 80*(x(2)-10)/((x(1)^2+x(2)^2-20*x(2)+100)^0.5)- 80*(x(2)+10)/((x(1)^2+x(2)^2+20*x(2)+100)^0.5)-5;

Respuestas (1)

Matt J
Matt J el 17 de Ag. de 2017
One reason might be that you are not doing any restarts in your conjugate gradient implementation. In non-quadratic problems, the sequence of directions, d, will typically lose conjugacy as the iterations progress and you need to restart with d=-gradient from time to time.
  5 comentarios
Matheus
Matheus el 17 de Ag. de 2017
Thank you for the infomraiotn. Matt, do you work with optimization? I am doing my Master's degree and currently I am attending a course called optimization tecnhiques.
Matheus
Matheus el 17 de Ag. de 2017
One more thing, I wrote the equations in a different way:
function f = fob_8_58(x);
f = 8*x(1)^2 + 8*x(2)^2 - 80*(((x(1)^2)+(x(2)^2)-20*x(2)+100)^0.5)- 80*(((x(1)^2)+(x(2)^2)+20*x(2)+100)^0.5)-5*x(1)-5*x(2);
function g = grad_fob_8_58(x)
g(1) = 16*x(1) -(80*x(1)*((x(1)^2+x(2)^2-20*x(2)+100)^-0.5))- (80*x(1)*((x(1)^2+x(2)^2+20*x(2)+100)^-0.5))-5; g(2) =16*x(2) - (80*(x(2)-10)*((x(1)^2+x(2)^2-20*x(2)+100)^-0.5))- (80*(x(2)+10)*((x(1)^2+x(2)^2+20*x(2)+100)^-0.5))-5;
I got the same answer with less steps. This is strange for me. Does it make sense for you?

Iniciar sesión para comentar.

Categorías

Más información sobre Fit Postprocessing en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by