Sparse matrix with diagonal zero and elements in every row/column
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Evelyn Salt
el 18 de Ag. de 2017
Comentada: Evelyn Salt
el 22 de Ag. de 2017
I'm trying to produce a sparse matrix that has zeros on the diagonal, but also has at least one element in each row and column.
With this code I get the first part, but I don't know how to make sure that each row and column have elements in them.
R = sprand(4,4,0.5);
r = 0 + (0.5 - 0)*rand(4,4);
A = full (R);
A(1:4+1:4*4)=0;
Nonz = nnz(A);
Diff = ceil(0.5*(4^2-4)) - Nonz;
B = find (A==0);
A=A';
B = find (A==0);
C = setdiff(B,1:4+1:4*4);
D = datasample(C,Diff,1,'Replace',false);
E=A;
for i = 1:length(D)
E(D(i)) = 1;
end
E=E';
E(find(E)) = r(find(E));
2 comentarios
KL
el 18 de Ag. de 2017
Editada: KL
el 18 de Ag. de 2017
I'm trying to produce a sparse matrix that has zeros on the diagonal, but also has at least one element in each row and column ...
You already have that!?
>> A = 0 + (0.5 - 0)*rand(4,4)
A(1:4+1:4*4)=0
A =
0.2947 0.0229 0.1600 0.4296
0.4233 0.4000 0.4959 0.2969
0.0890 0.3980 0.2755 0.4307
0.1483 0.1979 0.0073 0.3885
A =
0 0.0229 0.1600 0.4296
0.4233 0 0.4959 0.2969
0.0890 0.3980 0 0.4307
0.1483 0.1979 0.0073 0
Respuesta aceptada
Chris Perkins
el 21 de Ag. de 2017
Hi Evelyn,
The code below shows how to compute a sparse square matrix where each row and column have at least one non-zero value, given a dimension size.
It computes a sparse matrix, and then tests for whether the matrix meets the row and column conditions, generating a new matrix until it does, so the final matrix avoids bias from removing elements.
% Specify size of matrix
dim = 4;
% Compute probability for sparse matrix based on size of matrix
density = 1 - (1 - 1/(2^(1/dim)))^(1/(dim-1));
% Create sparse matrix
A = full(sprand(dim,dim,density));
% Set diagonal to zeroes
A(eye(size(A)) ~= 0) = 0;
% Check that A satisfied conditions (no row or column with all zeroes)
% If A does not, re-compute A and check again
while ~(all(any(A,1)) && all(any(A,2)))
A = full(sprand(dim,dim,density));
A(eye(size(A)) ~= 0) = 0;
end
When I tested this, it found a valid matrix in a small number of iterations each time.
If you need the matrix to be either sparser or less sparse, you can adjust 'density' to either a different function or a constant to adjust the average number of elements in the matrix.
Más respuestas (0)
Ver también
Categorías
Más información sobre Sparse Matrices en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!