Derivative in function handle

77 visualizaciones (últimos 30 días)
vincenzo
vincenzo el 11 de Sept. de 2017
Comentada: James Tursa el 12 de Sept. de 2017
f=@(x) x + log(x);
f1=diff(f)
f2=diff(f1)
I want to assign first derivative of 'f' to 'f1', and second derivative for 'f1' to 'f2' But i have this error "Undefined function 'diff' for input arguments of type 'function_handle'". How to fix? Thanks

Respuestas (2)

José-Luis
José-Luis el 11 de Sept. de 2017
Editada: José-Luis el 11 de Sept. de 2017
If you're gonna do this numerically, you need to specify an interval in which to evaluate. Note that diff doesn't really give the derivative, but I'll stick to your nomenclature.
limits = [1,10];
f = @(interval) (interval(1):interval(2)) + log(interval(1):interval(2));
f1 = diff(f(limits));
f2 = diff(f1);
You could also do it symbolically but I can't help you there because I don't have the symbolic math toolbox.

James Tursa
James Tursa el 11 de Sept. de 2017
Editada: James Tursa el 11 de Sept. de 2017
E.g., if you want function handles you could get at them with the symbolic toolbox
>> syms x
>> f = @(x) x + log(x)
f =
@(x)x+log(x)
>> f1 = eval(['@(x)' char(diff(f(x)))])
f1 =
@(x)1/x+1
>> f2 = eval(['@(x)' char(diff(f1(x)))])
f2 =
@(x)-1/x^2
If you plan on feeding vectors or matrices etc to these function handles, then you could wrap the expressions appropriately with the vectorize( ) function. E.g.,
>> f1 = eval(['@(x)' vectorize(char(diff(f(x))))])
f1 =
@(x)1./x+1
>> f2 = eval(['@(x)' vectorize(char(diff(f1(x))))])
f2 =
@(x)-1./x.^2
  2 comentarios
Walter Roberson
Walter Roberson el 11 de Sept. de 2017
No need for the eval()
syms x
f = @(x) x + log(x)
f1 = matlabFunction( diff(f(x)) );
f2 = matlabFunction( diff(f1(x)) );
James Tursa
James Tursa el 12 de Sept. de 2017
@Walter: +1

Iniciar sesión para comentar.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by