Trial-and-error or K-fold cross-validation
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hamza Ali
el 30 de Sept. de 2017
Comentada: Hamza Ali
el 1 de Oct. de 2017
Hello,
As researcher, i would like to ask for efficient algorithm to determine ANN's architecture (number of hidden neurons in one hidden layer),and i can not choose between Trial-and-Error and K-Fold Cross-validation. Indeed, most of researchers use in their articles K-Fold Cross-validation and i do not know why ? Thank you for you answer.
0 comentarios
Respuesta aceptada
Greg Heath
el 1 de Oct. de 2017
If you search in both the NEWSGROUP and ANSWERS you will see zillions of examples of my two loop solution:
%Outer loop over number of hidden nodes, e.g.,
rng(0), j=0
for h = Hmin:dH:Hmax
j = j + 1
net = fitnet(h);
etc ...
%Inner loop over Ntrials sets of random initial weights
for i = 1:Ntrials
net = configure(net,x,t);
etc ...
Hope this helps.
Thank you for formally accepting my answer
Greg
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!