Trial-and-error or K-fold cross-validation
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hamza Ali
el 30 de Sept. de 2017
Comentada: Hamza Ali
el 1 de Oct. de 2017
Hello,
As researcher, i would like to ask for efficient algorithm to determine ANN's architecture (number of hidden neurons in one hidden layer),and i can not choose between Trial-and-Error and K-Fold Cross-validation. Indeed, most of researchers use in their articles K-Fold Cross-validation and i do not know why ? Thank you for you answer.
0 comentarios
Respuesta aceptada
Greg Heath
el 1 de Oct. de 2017
If you search in both the NEWSGROUP and ANSWERS you will see zillions of examples of my two loop solution:
%Outer loop over number of hidden nodes, e.g.,
rng(0), j=0
for h = Hmin:dH:Hmax
j = j + 1
net = fitnet(h);
etc ...
%Inner loop over Ntrials sets of random initial weights
for i = 1:Ntrials
net = configure(net,x,t);
etc ...
Hope this helps.
Thank you for formally accepting my answer
Greg
Más respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!