Trial-and-error or K-fold cross-validation

2 visualizaciones (últimos 30 días)
Hamza Ali
Hamza Ali el 30 de Sept. de 2017
Comentada: Hamza Ali el 1 de Oct. de 2017
Hello,
As researcher, i would like to ask for efficient algorithm to determine ANN's architecture (number of hidden neurons in one hidden layer),and i can not choose between Trial-and-Error and K-Fold Cross-validation. Indeed, most of researchers use in their articles K-Fold Cross-validation and i do not know why ? Thank you for you answer.

Respuesta aceptada

Greg Heath
Greg Heath el 1 de Oct. de 2017
If you search in both the NEWSGROUP and ANSWERS you will see zillions of examples of my two loop solution:
%Outer loop over number of hidden nodes, e.g.,
rng(0), j=0
for h = Hmin:dH:Hmax
j = j + 1
net = fitnet(h);
etc ...
%Inner loop over Ntrials sets of random initial weights
for i = 1:Ntrials
net = configure(net,x,t);
etc ...
Hope this helps.
Thank you for formally accepting my answer
Greg
  1 comentario
Hamza Ali
Hamza Ali el 1 de Oct. de 2017
Thank you Mr Greg. i will keep you informed of the results in order to discuss them.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by