solve larger than 3x3 matrix and error message
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have a function:
function [A_new, b_new] = forward_elimination(A, b)
%FORWARD_ELIMINATION - Performs forward elimination to put A into unit
% upper triangular form.
% A - original matrix of Ax = b
% b - original vector of Ax = b
% A_new - unit upper triangular A formed using Gaussian Elimination
% b_new - the vector b associated with the transformed A
% Default output
A_new = A;
b_new = b;
[n,n]=size(A);
Ab=[A b];
Ab(1,:)=Ab(1,:)/Ab(1,1);
Ab(2,:)=Ab(2,:)/Ab(2,2);
Ab(3,:)=Ab(3,:)/Ab(3,3);
Ab(2,:)=Ab(1,:)*Ab(2,1)-Ab(2,:);
Ab(2,:)=Ab(2,:)/Ab(2,2);
Ab(3,:)=Ab(1,:)*Ab(3,1)-Ab(3,:);
Ab(3,:)=Ab(3,:)/Ab(3,2);
Ab(3,:)=Ab(2,:)*Ab(3,2)-Ab(3,:);
Ab(3,:)=Ab(3,:)/Ab(3,3);
A_new=Ab(:,1:end-1);
b_new=Ab(:,end);
if Ab(1,1)==0 || Ab(2,2)==0 || Ab(3,3)==0 || Ab(3,2)==0
error(zeros(n))
end
end
This produces the desired answer for a 3x3 matrix but how do I expand this for larger matrices. Also, how to i write the code such that if the system is unsolvable or is divided by 0, the algorithm responds an error message and returns a matrix of all zeros? I have attempted above.
0 comentarios
Respuestas (1)
Nicolas Schmit
el 1 de Nov. de 2017
how do I expand this for larger matrices.
use for loops
how to i write the code such that if the system is unsolvable or is divided by 0, the algorithm responds an error message and returns a matrix of all zeros?
You can first calculate the determinant of the matrix, and issue an error message if it is null.
1 comentario
Ver también
Categorías
Más información sobre Sparse Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!