
How to plot a spherical cap in 2-D
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I would like to know how to plot the top part of a sphere or the spherical cap in 2-D (circular segment) as shown here: http://mathworld.wolfram.com/SphericalCap.html. I already know the radius of the spherical cap, a1, the contact angle, theta (the angle between the normal to the sphere at the bottom of the cap and the base plane) and the height of the spherical cap, h.
a1 = 1;
theta = 1.34; %in radians
h = a1 * (1 - cos(theta)) / sin(theta) ;
0 comentarios
Respuestas (1)
Akira Agata
el 20 de Nov. de 2017
I think fsurf function would be help, like:
funx = @(theta,phi) sin(theta).*cos(phi);
funy = @(theta,phi) sin(theta).*sin(phi);
funz = @(theta,phi) cos(theta);
fsurf(funx,funy,funz,[0 1.34 -pi pi]) % plot the cap where theta = 0 ~ 1.43 radian

5 comentarios
Akira Agata
el 27 de Nov. de 2017
Thanks for the clarification!
OK. Then, how about the following example? I hope this would be similar to what you want to plot.
a1 = 1;
theta = 1.34; %in radians
t = linspace(-theta/2 + pi/2, theta/2 + pi/2);
x = a1*cos(t);
y = a1*sin(t);
figure
fplot(@(phi) a1*sin(phi), @(phi) a1*cos(phi),[0 2*pi],'k:')
hold on
patch(x,y,'g')

Carlos Reyes
el 14 de Feb. de 2019
Editada: Carlos Reyes
el 14 de Feb. de 2019
Greetings,
Can you show how would you go about coloring other areas in this sphere? For example say I would like to color in blue the area from 0.8 down to 0 in a blue color.
I tried it like this: (but this not cover the area completely)
R = 1 ;
theta = 1.85; %in radians
t = linspace(-theta/2 + pi/2, theta/2 + pi/2);
x = R*cos(t);
y = R*sin(t);
R2 = 0.6;
theta2 = 3.16; %radians
t2= linspace(-theta2/2 + pi/2, theta2/2 + pi/2);
x2= R2*cos(t2);
y2= R2*sin(t2);
figure
fplot(@(phi) R*sin(phi), @(phi) R*cos(phi),[0 2*pi],'k:')
hold on
patch(x,y,'b')
patch(x2,y2,'g')
Ver también
Categorías
Más información sobre Surface and Mesh Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!