Solve two differential equations simultaneously

1 visualización (últimos 30 días)
J Krause
J Krause el 27 de Nov. de 2017
Editada: Torsten el 28 de Nov. de 2017
I need to design a controller for and simulate a pneumatic control system. Specifically I need to simulate these system equations and eventually design my own controller.
Since the position equations (x) are a function of the time derivative of the pressure (Pdot) and vice versa, what is the best way of simulating this in Matlab? I have solved differential equations before using ode45, but nothing like this.
Thanks for any help.
To clarify, P1 and P2 pertain to the pressures on each side of a pneumatic actuator. X is the displacement variable for the actuator. m_dot1 and m_dot2 are the mass flow rates into each side of the pneumatic actuator from the control valve.
Cited paper: folk.ntnu.no/skoge/prost/proceedings/acc04/Papers/0905_FrM16.4.pdf
  3 comentarios
J Krause
J Krause el 28 de Nov. de 2017
That part I understand.
I am unsure of the best way to interface the (P)dot (pressure) equations with the (v_p)dot (position) equation, since they depend on each other. The volumes (V1 and V2) are dependent on x_p. Where x_p = v_p.
Torsten
Torsten el 28 de Nov. de 2017
Editada: Torsten el 28 de Nov. de 2017
I don't understand your problem.
If you insert v_p for (x_p)_dot in the pressure equations, the 4 ODEs are explicit in y(1)=x_p, y(2)=v_p, y(3)=P1 and y(4)=P2.
So they are easily set up for ODE45 as
fun=@(t,y)[y(2);1/M*(-b*y(2)+A*y(3)-A*y(4)-F1-F2);gamma*R*T/V1(y(1))*m1dot-alpha*gamma*y(3)*A/V1(y(1))*y(2);-gamma*R*T/V2(y(1))*m2dot+alpha*gamma*y(4)*A/V2(y(1))*y(2)];
Best wishes
Torsten.

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre General Applications en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by