How can I determine if two eigenvectors form an open or closed subspace?

1 visualización (últimos 30 días)
Hi, I have two eigenvectors, which form a subspace in H. Is there an easy way to determine whether the subspace they form is open or closed in H?
Thanks
  2 comentarios
Sergio Manzetti
Sergio Manzetti el 21 de Dic. de 2017
Editada: Sergio Manzetti el 21 de Dic. de 2017
Hi Torsten, H=Hilbert space (L^2[-inf, +inf]).

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 21 de Dic. de 2017
  3 comentarios
Matt J
Matt J el 21 de Dic. de 2017
Editada: Matt J el 21 de Dic. de 2017
From the document in Torsten's link,
"Every finite dimensional subspace of a Hilbert space H is closed."
The span of any two vectors is clearly an example of a finite dimensional sub-space and is therefore closed in L2.
Sergio Manzetti
Sergio Manzetti el 22 de Dic. de 2017
Thanks Matt. I take this is because they start from some point and are thus not infinite?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by