How can I get the the ward distance change to find an optimal number of clusters.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
John Trostel
el 21 de Dic. de 2017
Respondida: Bernhard Suhm
el 29 de Dic. de 2017
Using hierarchical clustering, I would like to get the the ward distance change in every step to find an optimal number of clusters. I can plot the dendrogram, but would like the actual distances and the number of clusters that they correspond to.
0 comentarios
Respuesta aceptada
Bernhard Suhm
el 29 de Dic. de 2017
The evalclusters function determines the optimal number of clusters for you. ‘linkage’ will use agglomerative clustering as the algorithm with the ‘ward’ distance. You have a choice of cluster evaluation criteria, ‘CalinksiHarabasz’ and ‘DaviesBouldin’ compare the between and within cluster distances in slightly different ways, and there is also a ‘gap’ and ‘silhouette’ criterion. The output object from evalclusters contains the criterion values for each number of clusters along with the optimal value.
So for example,
eva = evalclusters(X,'linkage','CalinskiHarabasz','KList',[2:6])
with input data in the matrix X will evaluate 2-6 clusters and provide the following output:
InspectedK: [2 3 4 5 6]
CriterionValues: [180.0914 300.2080 254.8927 220.7171 199.2285]
OptimalK: 3
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Cluster Visualization and Evaluation en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!