How to find optimal k from k means clustering by using elbow method

91 visualizaciones (últimos 30 días)
I want to find optimal k from k means clustering by using elbow method . I have 100 customers and each customer contain 8689 data sets. How can I create a program to cluster this data set into appropriate k groups.

Respuesta aceptada

kira
kira el 2 de Mayo de 2019
old question, but I just found a way myself looking at matlab documentation:
klist=2:n;%the number of clusters you want to try
myfunc = @(X,K)(kmeans(X, K));
eva = evalclusters(net.IW{1},myfunc,'CalinskiHarabasz','klist',klist)
classes=kmeans(net.IW{1},eva.OptimalK);

Más respuestas (1)

Saranya  A
Saranya A el 8 de Mzo. de 2018
Editada: KSSV el 11 de Feb. de 2021
This function will help you to find the optimum number of clusters. https://in.mathworks.com/matlabcentral/fileexchange/49489-best-kmeans-x-

Categorías

Más información sobre Cluster Analysis and Anomaly Detection en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by