Root Mean Square Value of Histogram
15 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Amy Wong
el 15 de En. de 2018
Comentada: Image Analyst
el 17 de En. de 2018
How do I find the root mean square value of this histogram?

The data is Histo = [1;47;56;1298;9770;1114;0;0;2]
0 comentarios
Respuesta aceptada
Rik
el 15 de En. de 2018
Editada: Rik
el 15 de En. de 2018
If you don't have the original data, you can approximate it with the code below.
Histo = [1;47;56;1298;9770;1114;0;0;2]
centers=-4:4;
mean_of_squared_values=sum(Histo.*(centers(:).^2))/sum(Histo);
RMS=sqrt(mean_of_squared_values);
This works because the mean is the sum divided by the count.
6 comentarios
Image Analyst
el 17 de En. de 2018
I'm guessing you overlooked my answer below. We don't know which of the 3 RMS values you want. Only you know that. Maybe if you told us what you wanted to do with that information we could guide you.
Más respuestas (1)
Image Analyst
el 15 de En. de 2018
Amy:
I just want to make sure you realize that the RMS of the original data values is not the same as the RMS of the bin locations (what Rik gave you), and neither is the same as the RMS of the bin heights. Yo DO know that don't you? So, which do you want? I give an illustration of all 3 in the demo code below, and you can see how they're different.
r = randn(20);
h = histogram(r)
counts = h.Values'
edges = h.BinEdges'
binCenters = (edges(1:end-1) + edges(2:end))/2
mean_of_squared_values = sum(counts.*(binCenters.^2))/sum(counts);
% Compute the RMS value of the bin center locations.
rmsCenters = sqrt(mean_of_squared_values)
% Compute the RMS value of the bin heights (counts).
rmsCounts = rms(counts)
% Compute the RMS of the actual data values.
rmsValues = rms(r(:))
% They're not the same!
0 comentarios
Ver también
Categorías
Más información sobre Histograms en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!