数値データの畳み込みができません.

1 visualización (últimos 30 días)
Asuka
Asuka el 19 de En. de 2018
Comentada: mizuki el 31 de En. de 2018
失礼致します. sequenceInputLayerとconvolution2dLayerを同時に使用することができません. Construct and Train an LSTM Networkの例題を実行しました.
その後,層の定義の部分でLSTMレイヤーを畳み込み層等に変更して実行すると「インデックスが行列の次元を超えています.」とでます. convolution2dLayerの引数に問題があるように思うのですが,何か解決策はありますでしょうか?
load JapaneseVowelsTrain
layers = [ ...
sequenceInputLayer(12)
convolution2dLayer([1 3],3,'Stride',[1 1]);
reluLayer();
fullyConnectedLayer(9)
softmaxLayer
classificationLayer]
maxEpochs = 150;
miniBatchSize = 27;
options=trainingOptions('sgdm','MaxEpochs',maxEpochs,...
'MiniBatchSize',miniBatchSize);
CNNConvnet = trainNetwork(X,Y,layers,options)
load JapaneseVowelsTest
miniBatchSize = 27;
YPred = classify(CNNConvnet,XTest,...
'MiniBatchSize',miniBatchSize);
acc = sum(YPred == YTest)./numel(YTest)
  1 comentario
mizuki
mizuki el 31 de En. de 2018
R2017b のバージョンでは、sequenceInputLayer() に対して convolution2dLayer() を適用することができない状況のようです。
時系列データに対しては LSTM がよく使用されますので、内容に依ってはこちらもご検討ください。

Iniciar sesión para comentar.

Respuesta aceptada

michio
michio el 19 de En. de 2018
Editada: michio el 19 de En. de 2018
imageInputLayer([1 6000]);
などと、信号を 1xN の"画像"として取り扱った例があります。
layers = [imageInputLayer([1 6000])
convolution2dLayer([1 200],20,'stride',1)]
と構成していきます。英語ですがより具体的な例はこちらも参考にしてください。

Más respuestas (0)

Categorías

Más información sobre 時系列、シーケンス、およびテキストを使用した深層学習 en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!