Spectral radius of matrix?

90 visualizaciones (últimos 30 días)
Giovanni Barbarino
Giovanni Barbarino el 25 de En. de 2018
Comentada: Joseph Moore el 8 de Jun. de 2022
In order to find the spectral radius of a matrix, I commonly use
max(abs(eig(A)))
that computes all the eigenvalues. Is there a faster way? I'm interested only on the spectral radius, and don't need anything else..

Respuestas (1)

Steven Lord
Steven Lord el 11 de Mayo de 2018
Ask the eigs function to return the largest magnitude eigenvalue.
% Generate a vector of eigenvalues suitable for the 'randcorr' option of the gallery function
x = rand(1, 100);
x = 100*x./sum(x);
% Generate a matrix whose eigenvalues are the elements of x
A = gallery('randcorr', x);
% Compute the largest magnitude eigenvalue
largest = eigs(A, 1, 'lm')
% Check: this should be small
largest - max(x)
If you're using release R2017b or later, you might want to use 'largestabs' instead of 'lm' in the eigs call. The old options are still accepted, but 'largestabs' is more descriptive of what it's doing than 'lm'.
  5 comentarios
David Goodmanson
David Goodmanson el 12 de Mayo de 2018
Editada: David Goodmanson el 12 de Mayo de 2018
Hi Jan,
I forgot that line. The initial n is rand(1000,1), so I addended the comment.
The code was not a serious suggestion since it does not contain a tolerance check to stop the iteration, which might have slowed it down too much. But I found that for the special case of the random matrix it takes surprisingly few iterations to get a pretty accurate result.
Joseph Moore
Joseph Moore el 8 de Jun. de 2022
eigs(X, 1, 'lm') will give negative answers

Iniciar sesión para comentar.

Categorías

Más información sobre Matrices and Arrays en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by