Feature extraction using DWT and WPT
12 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi,
Can anyone confirm if my method of feature extraction is correct or not? I have used DWT and later WPT to decompose and extract features from vibration signals.
For DWT, I used the following MATLAB functions:
Example:
x1= signal;
[cA1,cD1]= wavedec(x1,1,'db4');
...
plot(cA1); title('Level-1 Approximation Coefficients')
figure(1); subplot(313);
plot(cD1); title('Level-1 Detail Coefficients')
k1=kurtosis(cA1) %E.g of one parameter used to extract some features%Approximation%
k2=kurtosis(cD1) %details%
...
And other statistical parameters.
My extracted features, after being used as inputs for the ANN classifier, showed that approximations are better than details, and performed with a very high classification rate.
I haven't found a reason to reconstruct the signal or using any filters (i.e. Low and high filters)?!
MATLAB staff and experts, can you confirm my method or correct me please?
5 comentarios
Rasheed Majeed
el 15 de Sept. de 2021
Dear Tubi
I think you have some error in subplot , Index must be a 3 -digit number of the format mnp
Respuestas (1)
Bernhard Suhm
el 25 de Mzo. de 2018
You could try using wavelets, the basic documentation is here: https://www.mathworks.com/help/wavelet/ref/dwtfilterbank.wavelets.html. That requires the Wavelet toolbox though, which you could get via a trial.
0 comentarios
Ver también
Categorías
Más información sobre AI for Signals and Images en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!