Trapezoidal rule to find total work?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Rachel Dawn
el 28 de Mzo. de 2018
Editada: Roger Stafford
el 28 de Mzo. de 2018
I'm given 6 values for time, Force, and velocity. And I'm told to find total work with trapezoidal rule. (first time value is zero)
Does this seem correct? I excluded the code where I assign t=[0,#, #,...] & v=[.2, #, #...] & F=[2.0, #, #...]
pos(1)=0
work(1)=0
totalwork=0
for i=2:length(t)
area=(v(i)+v(i-1))*(t(i)-t(i-1))/2
pos(i)=pos(i-1) + area
work(i)= (pos(i) + pos(i-1))*(F(i)-F(i-1))/2
totalwork= totalwork + work(i)
end
totalwork
2 comentarios
David Goodmanson
el 28 de Mzo. de 2018
Editada: David Goodmanson
el 28 de Mzo. de 2018
Hi Rachel,
you should take a look at the (pos(i) + pos(i-1))*(F(i)-F(i-1))/2 term. If the force is constant everywhere, your expression will produce zero for the total work. So you need to describe the correct trapezoid.
Respuesta aceptada
Roger Stafford
el 28 de Mzo. de 2018
Editada: Roger Stafford
el 28 de Mzo. de 2018
I would think your code should be this:
work = 0;
for k = 2:length(t)
work = work + (F(k)+F(k-1))/2*(v(k-1)+v(k))/2*(t(k)-t(k-1));
end
That is, the quantity "(v(k-1)+v(k))/2*(t(k)-t(k-1))" is the approximate displacement during the time interval t(k-1) to t(k), and if it is multiplied by the average force (trapezoid rule), "(F(k)+F(k-1))/2", during that time interval you would get the approximate work done then. The sum of the five work values should give you the total work done.
[Addendum: Or perhaps you could use this:
work = 0;
for k = 2:length(t)
work = work + (F(k)*v(k)+F(k-1)*v(k-1))/2*(t(k)-t(k-1));
end
because you are approximating the integral of F*v with respect to time, t.]
2 comentarios
Roger Stafford
el 28 de Mzo. de 2018
Editada: Roger Stafford
el 28 de Mzo. de 2018
" I just tried both those sections of code you included and they give different answers." Yes, they are not identical, but are different approximations. Assuming F and v vary in a reasonably smooth fashion, they should not be greatly different. It is the difference between
(F(k)*v(k)+F(k-1)*v(k-1))/2
and
(F(k)*v(k)+F(k)*v(k-1)+F(k-1)*v(k)+F(k-1)*v(k-1))/4
It is not clear which of these best represents the trapezoidal rule. I would hazard the guess that the first of these (that is, the second in the answer) is likely to be the best.
Más respuestas (0)
Ver también
Categorías
Más información sobre Startup and Shutdown en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!