Discretizing a continuous distribution

5 visualizaciones (últimos 30 días)
alpedhuez
alpedhuez el 29 de Mzo. de 2018
Comentada: Walter Roberson el 1 de Mayo de 2019
Suppose I have a continuous pdf on [0,1]. Suppose I have grid points {0,0.1,...,1}. Suppose I calculate f(0),f(0.1),...,f(1) and normalize by \sum{f(0)+....+f(1)}. Would it give an approximate discretized distribution?
  1 comentario
Torsten
Torsten el 29 de Mzo. de 2018
What do you mean by "Discretize a continuous distribution" ?

Iniciar sesión para comentar.

Respuestas (2)

Xiaolu Zhu
Xiaolu Zhu el 29 de Dic. de 2018
Did you find the answer of how to discretize a continuous distribution?
  2 comentarios
S.R.
S.R. el 1 de Mayo de 2019
I also would like to know if anyone knows how to discritize a continious distribution such as normal distribution or exponential distribution knowing its mean and standard deviation.
Walter Roberson
Walter Roberson el 1 de Mayo de 2019
Do you want equal spacing on the independent variable? Do you want to know where the boundaries are for equal spacing on the cdf? Do you want to divide up a range so that in each section the product of the pdf at the center point times the bin width is equal for all the bins?

Iniciar sesión para comentar.


Walter Roberson
Walter Roberson el 29 de Dic. de 2018
No, it would not.
Consider the beta distribution with alpha=2, beta=5; https://en.wikipedia.org/wiki/Beta_distribution
x = 0:.1:1;
Alpha = 2; Beta = 5; %do not use beta, we need the beta function
num = x.^(Alpha-1).*(1-x).^(Beta-1);
den = gamma(Alpha)*gamma(Beta)/gamma(Alpha+Beta);
f = num./den;
fnorm = f./sum(f);
disp(mat2str(fnorm))
syms t;
Betareg = @(x,a,b) vpaintegral(t^(a-1).*(1-t)^(b-1),t,0,x)./beta(a,b);
fcdf = double(arrayfun(@(X) Betareg(X, Alpha, Beta), x));
disp(mat2str(fcdf))
[0 0.201845869866174 0.25202276572835 0.221596677434241 0.159483156437471 0.0961390555299185 0.0472542685740655 0.0174434702353484 0.00393785571450546 0.000276880479926165 0]
[0 0.114265 0.34464 0.579825 0.76672 0.890625 0.95904 0.989065 0.9984 0.999945 1]
Notice that f rises and falls but the cdf doesn't. So you might want cumsum(f)./sum(f) which would give you
[0 0.201845869866174 0.453868635594524 0.675465313028765 0.834948469466236 0.931087524996154 0.97834179357022 0.995785263805568 0.999723119520074 1 1]
You can see that the approximation is not good at all.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by