how can I replace the softmax layer with another classifier as svm in convolution network
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I made deep learning application that using softmax
layers = [ imageInputLayer(varSize); conv1; reluLayer;
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(4,'Stride',2);
convolution2dLayer(5,32,'Padding',2,'BiasLearnRateFactor',2);
reluLayer()
maxPooling2dLayer(2,'Stride',2);
convolution2dLayer(5,64,'Padding',2,'BiasLearnRateFactor',2);
reluLayer();
maxPooling2dLayer(4,'Stride',2)
fc1;
reluLayer();
fc2;
reluLayer();
%returns a softmax layer for classification problems. The softmax layer uses the softmax activation function.
softmaxLayer()
classificationLayer()];
I want to use SVM and random forest classifiers instead of softmax. and use a deep learning for feature extraction. I hope I can get a link for a tutorial.
1 comentario
Respuestas (4)
Johannes Bergstrom
el 17 de Abr. de 2018
Here is an example: https://www.mathworks.com/help/nnet/examples/feature-extraction-using-alexnet.html
Nagwa megahed
el 21 de Abr. de 2022
the only possible solution is to save the extracted features by the deep model , then use this features as an input to the SVM or any other wanted classifier.
1 comentario
Saifullah Razali
el 19 de Feb. de 2019
hello.. just wondering.. have u got the answer yet? i have the same exact problem
0 comentarios
Mahzad Pirghayesh
el 28 de En. de 2021
I have the same problem too,can any body help us
0 comentarios
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!