Modify layer output in custom neural network
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I want to modify the output of one layer before sending it to the next layer. As an example you can think of output a2(k) in the custom neural network in https://se.mathworks.com/help/nnet/ug/create-and-train-custom-neural-network-architectures.html. Is it possible to apply some function on it before sending to layer 3. Or else is it possible to apply a new input p3(k) at layer 3 whose elements depend on the value of a2(k)?
0 comentarios
Respuestas (1)
Shantanu Dixit
el 29 de Mayo de 2025
Editada: Shantanu Dixit
el 29 de Mayo de 2025
Hi Ilias,
If I understood the query correctly, you're trying to apply a custom function between layers in a neural network. You can achieve this using MATLAB's 'functionLayer': https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.functionlayer.html which can be used to apply specific function to the layer input.
You can refer to the below example script which defines a simple CNN with an intermediate 'functionLayer' that applies the softsign operation "f(x) = x / (1 + |x|)".
% Network with a custom softsign activation
layers = [
imageInputLayer([28 28 1], 'Name', 'input')
convolution2dLayer(5, 20, 'Name', 'conv')
%%
% custom function
functionLayer(@(X) X ./ (1 + abs(X)), 'Name', 'softsign', 'Description', 'softsign')
%%
maxPooling2dLayer(2, 'Stride', 2, 'Name', 'maxpool')
fullyConnectedLayer(10, 'Name', 'fc')
softmaxLayer('Name', 'softmax')
];
net = dlnetwork(layers);
sampleInput = rand(28, 28, 1, 1);
dlX = dlarray(sampleInput, 'SSCB');
dlY = predict(net, dlX);
disp("Output of the network:");
disp(extractdata(dlY));
Hope this helps!
0 comentarios
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!