Make predictions on new data using a SVM

4 visualizaciones (últimos 30 días)
NC
NC el 20 de Jun. de 2018
Comentada: NC el 20 de Jun. de 2018
I trained a SVM classifcation model using "fitcsvm" function and tested with the test data set. Now I want to use this model to predict the classes of new (previously unseen) data. What should be done to predict new data ?
Following is the code I used.
load FeatureLabelsNum.csv
load FeatureOne.csv
X = FeatureOne(1:42,:);
y = FeatureLabelsNum(1:42,:);
%dividing the dataset into training and testing
rand_num = randperm(42);
%training Set
X_train = X(rand_num(1:34),:);
y_train = y(rand_num(1:34),:);
%testing Set
X_test = X(rand_num(34:end),:);
y_test = y(rand_num(34:end),:);
%preparing validation set out of training set
c = cvpartition(y_train,'k',5);
SVMModel =
fitcsvm(X_train,y_train,'Standardize',true,'KernelFunction','RBF',...'KernelScale','auto','OutlierFraction',0.05);
CVSVMModel = crossval(SVMModel);
classLoss = kfoldLoss(CVSVMModel)
classOrder = SVMModel.ClassNames
sv = SVMModel.SupportVectors;
figure
gscatter(X_train(:,1),X_train(:,2),y_train)
hold on
plot(sv(:,1),sv(:,2),'ko','MarkerSize',10)
legend('Resampled','Non','Support Vector')
hold off

Respuesta aceptada

Stephan
Stephan el 20 de Jun. de 2018
Editada: Stephan el 20 de Jun. de 2018
Hi,
use the
predict
command for this purpose. See the documentation for predict command for examples how to do.
Best regards
Stephan

Más respuestas (0)

Categorías

Más información sobre Classification en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by