How can I get analytical solution of trigonometric equations?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mukul
el 20 de Jun. de 2018
Comentada: Walter Roberson
el 28 de Jun. de 2018
the constants are:
k11 = (16*V1*V1)/(n^3*(pi)^2*(2*pi*f)*L)
k22 = (16*V2*V2)/(n^3*(pi)^2*(2*pi*f)*L)
k33 = (16*V3*V3)/(n^3*(pi)^2*(2*pi*f)*L)
k12 = (8*V1*V2)/(n^3*(pi)^2*(2*pi*f)*L)
k13 = (8*V1*V3)/(n^3*(pi)^2*(2*pi*f)*L)
k23 = (8*V2*V3)/(n^3*(pi)^2*(2*pi*f)*L)
The equations are:
P1 = (k12.*cos(x(1)*pi/360).*cos(x(2)*pi/360).*sin(x(4)*pi/180))+(k13.*cos(x(1)*pi/360).*cos(x(3)*pi/360).*sin(x(5)*pi/180))
P2 = -(k12.*cos(x(1)*pi/360).*cos(x(2)*pi/360).*sin(x(4)*pi/180))+(k23.*cos(x(2)*pi/360).*cos(x(3)*pi/360).*sin((x(5)-x(4))*pi/180))
P3 = -(k13.*cos(x(1)*pi/360).*cos(x(3)*pi/360).*sin(x(5)*pi/180))+(k23.*cos(x(2)*pi/360).*cos(x(3)*pi/360).*sin((x(4)-x(5))*pi/180))
Q1 = (k11.*cos(x(1)*pi/360).*cos(x(1)*pi/360))-(k12.*cos(x(1)*pi/360).*cos(x(2)*pi/360).*cos(x(4)*pi/180))-(k13.*cos(x(1)*pi/360).*cos(x(3)*pi/360).*cos(x(5)*pi/180))
Q2 = -(k12.*cos(x(1)*pi/360).*cos(x(2)*pi/360).*cos(x(4)*pi/180))+(k22.*cos(x(2)*pi/360).*cos(x(2)*pi/360))-(k23.*cos(x(2)*pi/360).*cos(x(3)*pi/360).*cos((x(5)-x(4))*pi/180))
Q3 = -(k13.*cos(x(1)*pi/360).*cos(x(3)*pi/360).*cos(x(5)*pi/180))-(k23.*cos(x(2)*pi/360).*cos(x(3)*pi/360).*cos((x(5)-x(4))*pi/180))+(k33.*cos(x(3)*pi/360).*cos(x(3)*pi/360))
How can I solve for the angles x(1), x(2), x(3), x(4) and x(5)? Can anyone please help me to solve these equations?
8 comentarios
Walter Roberson
el 26 de Jun. de 2018
There is not necessarily any error in your code. The system is just difficult to solve.
My work so far shows that for each x1 there are two x2, and that for each x2 there are four x3. Computation is slow, so I have not gotten further than that quite yet.
Respuesta aceptada
Walter Roberson
el 22 de Jun. de 2018
Analytic solution:
x(1) = 180 + 360*Z1
x(2) = 180 + 360*Z2;
x(3) = 180 + 360*Z3;
x(4) and x(5) arbitrary (that is, the above 3 together solve all 5 equations)
Here, Z1, Z2, and Z3 represent arbitrary integers
6 comentarios
Walter Roberson
el 28 de Jun. de 2018
Solving for x(4) and x(5) both failed at the place I was indicating was taking a long time. I did not go back to try substituting in the other choices.
Más respuestas (0)
Ver también
Categorías
Más información sobre Particle & Nuclear Physics en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!