SNR in AWGN
64 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
oblivious
el 10 de Jun. de 2012
Respondida: philip
el 11 de Oct. de 2023
Hello,
i am trying to do some simulation of AWGN channel. matlab has a function awgn(x,snr). what kind of snr does it use here? is it Eb/No (average bit energy/power spectral density)? If so, then i know the awgn has a PSD equal to No/2. does that psd in the snr term implies No/2?
-OBLI
0 comentarios
Respuesta aceptada
Darel
el 4 de Ag. de 2021
The function awgn does not use EbNo. It uses SNR, defined in the same manner as the snr() function from the Signal Processing Toolbox: sum of the squared samples of the signal over sum of the squared samples of the noise, where that ratio is converted to dB. Thus, if you created noisy data according to
y = awgn(x, SNR);
you should be able to check that
mySNR = snr(x, y-x)
is about the same as SNR in the first call.
0 comentarios
Más respuestas (2)
Wayne King
el 10 de Jun. de 2012
With the syntax
y = awgn(x,snr);
You generate a white noise vector with a variance of
variance = 10^(-snr/10);
noise = sqrt(variance)*randn(size(x));
If you use 'measured', then awgn actually measures the signal power.
For example:
x = cos(pi/4*(0:99));
y = awgn(x,5,'measured');
In this case the variance of the additive white noise is:
sigp = 10*log10(norm(x,2)^2/numel(x));
snr = sigp-5;
noisep = 10^(snr/10);
noise = sqrt(noisep)*randn(size(x));
5 comentarios
Mustafa qays
el 14 de Nov. de 2017
The calculation is correct but the variable names need to be corrected
Signal to noise ratio SNR = sigp/noise_p (in ratio)
or
SNR = sigp - noise_p (in dB)
=>
noise_p(dB) = sigp - SNR , SNR = 5 dB
noise_p(db) = sigp - 5
noise_p = 10^(noise_p(db)/10)
So , (snr) in his equation should be written as noise power in the last section of code
Ver también
Categorías
Más información sobre Propagation and Channel Models en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!