Activations of freezed layers are different between before/after training, why?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
ntinoson
el 29 de Jun. de 2018
Comentada: Amanjit Dulai
el 28 de Ag. de 2018
I follow the example "transfer-learning-using-googlenet" where, the last 3 layers ('loss3-classifier','prob','output') are replaced with 3 new ones. Then I 'freeze' the first 141 layers (that is up to and including 'pool5-drop_7x7_s1'):
layers(1:141) = freezeWeights(layers(1:141));
lgraph = createLgraphUsingConnections(layers,connections);
Then I follow fine-tuning.
Since 'pool5-7x7_s1' is BEFORE 'pool5-drop_7x7_s1', I would expect that the following two vectors were the same:
b_orig= activations(net_orig, I, 'pool5-7x7_s1');
b_tune= activations(net_tune, I, 'pool5-7x7_s1');
but they aren't!... Any idea why?
p.s. I also tried the activation of several other layers BEFORE 'pool5-drop_7x7_s1', and I got different vectors.... 'I' is an image, 'net_orig=googlenet;', and 'net_tune' is the resulting net after tuning.
2 comentarios
conngame
el 15 de Jul. de 2018
I have the same problem using alexnet. Any explanations to this question?
Respuesta aceptada
Amanjit Dulai
el 14 de Ag. de 2018
The vectors are different because when you fine tune on a new dataset, the average image in "imageInputLayer" is recalculated for your new dataset.
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!