Correct weight Initialization in CNN
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Andres Ramirez
el 29 de Jul. de 2018
Editada: Maria Duarte Rosa
el 5 de Jul. de 2019
When a very deep DAG network is built from scratch, the initialization of the weights made by matlab is not very good since it presents a vanishing gradient problem which causes the CNN not to learn.
What is the function with which Matlab does the initiation of CNN weights?
Why do you implement initialization functions in Matlab such as XAVIER or RELU AWARE SCALALED?
Thank you for your answers.
2 comentarios
Greg Heath
el 31 de Jul. de 2018
I do not understand
"Why do you implement initialization functions in Matlab such as XAVIER or RELU AWARE SCALALED?"
Please explain.
Greg
Respuesta aceptada
Maria Duarte Rosa
el 5 de Jul. de 2019
Editada: Maria Duarte Rosa
el 5 de Jul. de 2019
In R2019a, the following weight initializers are available (including a custom initializer via a function handle):
'glorot' (default) | 'he' | 'orthogonal' | 'narrow-normal' | 'zeros' | 'ones' | function handle
Glorot is also know as Xavier initializer.
Here is a page comparing 3 initializers when training LSTMs:
I hope this helps,
Maria
0 comentarios
Más respuestas (2)
Andres Ramirez
el 31 de Jul. de 2018
1 comentario
Greg Heath
el 1 de Ag. de 2018
Editada: Greg Heath
el 1 de Ag. de 2018
Do you have a reference for
RELA AWARE SCALALED
I have no idea what this is.
Thanks
Greg
fareed jamaluddin
el 4 de Ag. de 2018
I think you can take a look at this example https://www.mathworks.com/help/images/single-image-super-resolution-using-deep-learning.html
I am also looking for a way on weight initialization options, you can see in the example it create the initialization with He method for every conv layer.
0 comentarios
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!