Implicit differentiation of this equation
30 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ankit Gupta
el 23 de Ag. de 2018
Comentada: UMAIR
el 9 de Abr. de 2023
I am learning Differentiation in Matlab I need help in finding implicit derivatives of this equations find dy/dx when x^2+x*y+y^2=100 Thank you.
1 comentario
Respuesta aceptada
Walter Roberson
el 23 de Ag. de 2018
syms x y
diff(solve(x^2+x*y+y^2==100,y),x)
You will get two solutions because there are two distinct y for each x
If you want, you could continue
syms dy; solve(dy == diff(solve(x^2+x*y+y^2==100,y),x),x)
to get x in terms of dy
2 comentarios
Más respuestas (1)
Mbar
el 18 de Oct. de 2020
Editada: Mbar
el 18 de Oct. de 2020
Consider implicit function
. It is not always possible to solve analytically for
. However, almost always you can use the Implicit Function Theorem:




(
are partial derivatives:
).


Thus, define the implicit function,
, and the derivative is


syms x y %Declaring symbilic variables
F(x,y) = x^2 + x*y + y^2 - 100 %Declaring implicit function
% Using Implicit Function Theorem
dy_dx = - diff(F,x)/diff(F,y)
% Answer:
% -(2*x + y)/(x + 2*y)
This derivative is a function of both x and y. However it has a meaning only for pairs
which satisfy the implicit function
. You can solve for such points using what Walter Roberson suggested. For example, solve for y as a function of x, and substitute
:



double(subs(solve(F, y), x, 10))
This gives two points which satisfy the implicit function:
, and
. You can calculate the derivatve
at these points for example:



x0 = 10; y0 = -10;
F(x0, y0) %answer 0, i.e. the implicit function is satisfied.
dy_dx(x0, y0) %answer 1
x1 = 10; y1 = 0;
F(x1, y1) %answer 0, i.e. the implicit function is satisfied.
dy_dx(x1, y1) %answer -2
1 comentario
Ver también
Categorías
Más información sobre Logical en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!