How linear system of equations can be solved in matlab

1 visualización (últimos 30 días)
Wajahat
Wajahat el 8 de Sept. de 2018
Editada: madhan ravi el 10 de Sept. de 2018
How we can solve following linear system of equations in matlab?
A1_{x}=1i*a*(A1+A2);
A2_{x}=1i*a*(A1-A2);
A1_{t}=(-1i*a./2)*A1-A2;
A2_{t}=A1+(1i*a./2)*A2;
where A1=A1(x,t) and A2=A2(x,t) and "a" is an arbitrary constant. How can these equations can be solved in matlab?
And A1_{x} means partial derivative of A1 w.r.t "x".
  8 comentarios
Wajahat
Wajahat el 10 de Sept. de 2018
@Ravi, I have try to solve it symbolically, but matlab shows an error.
syms l p q
syms f1(x) f2(x)
S = dsolve(diff(f1) == l.^{-1}.*1i.*p.*f1 + l.^{-1}.*1i.*q.*f2, diff(f2) == l.^{-1}.*1i.*q.*f1 - l.^{-1}.*1i.*p.*f2);
S.f1
S.f2
Can you remove an error
Walter Roberson
Walter Roberson el 10 de Sept. de 2018
What is the I.^{-1} intended to mean?
It is not possible to raise anything to a cell array, not unless you define your own object class and override the power() operator.

Iniciar sesión para comentar.

Respuesta aceptada

madhan ravi
madhan ravi el 10 de Sept. de 2018
Editada: madhan ravi el 10 de Sept. de 2018
Try this @Wajahat:
syms l p q
syms f1(x) f2(x)
%edited after sir Walters comment
S1 = diff(f1) == l.^(-1).*1i.*p.*f1 + l.^(-1).*1i.*q.*f2;
S2 = diff(f2) == l.^{-1}.*1i.*q.*f1 - l.^{-1}.*1i.*p.*f2;
S = dsolve(S1,S2)
S.f2
S.f1

Más respuestas (0)

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by