fsolve message "Equation solved, inaccuracy possible"
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
sina
el 18 de Sept. de 2018
Comentada: Alex Sha
el 28 de Sept. de 2024
Hi
I want to solve a system of nonlinear equations using fsolve. But I get "Equation solved, inaccuracy possible." and all x are incorrect. By changing initial guess, nothing improves!
I appreciate your help
Regards,
Fun = @xisolver1;
x0 = [1e-4 1e-4 1e-4 1e-4 1e-4 1e-2 1e-2];
% options = optimoptions('fsolve','OptimalityTolerance',1e-20, 'FunctionTolerance', 1e-20);
options = optimoptions('fsolve','Display','iter','TolFun',1e-40,'TolX',1e-40);
xr = fsolve(Fun, x0, options);
function y = xisolver1(x)
T = 31.65 + 275.15;
lnK1 = 132.899 + (-13445.9/T) + -22.4773*(log10(T)/log10(exp(1)));
lnK2 = 216.05 + (-12431.7/T) + -35.4819*(log10(T)/log10(exp(1)));
lnK3 = 231.465 + (-12092.1/T) + -36.7816*(log10(T)/log10(exp(1)));
K1 = power(exp(1),lnK1);
K2 = power(exp(1),lnK2);
K3 = power(exp(1),lnK3);
KS1 = 1/K1;
KS2 = 1/K2;
KS3 = 1/K3;
% mole
n_CO2 = 6.3746;
n_K2CO3 = 9.7119;
n_H2O = 358.8905;
n_T = n_CO2 + n_K2CO3 + n_H2O;
% mass - gr/s
m_T = 8088.2946;
% molecular weight
MW_CO2 = 44.0095;
MW_CO3 = 60.0089;
MW_HCO3 = 61.0168;
MW_OH = 17.0073;
MW_H3O = 19.0232;
MW_H2O = 18.01528;
MW_K = 39.098;
MW_K2CO3 = 138.2055;
MW_KHCO3 = 100.1151;
% mole fraction
X_CO2T = (n_CO2 + n_K2CO3)/n_T;
X_K__ = 2*(n_K2CO3/n_T);
% mole number
N_CO2T = (n_CO2 + n_K2CO3);
y(1) = K1*(x(6)^2) - 1*x(4)*x(5);
y(2) = K2*x(3)*x(6) - 1*x(5)*x(2);
y(3) = K3*x(1)*(x(6)^2) - 1*x(5)*x(3);
y(4) = x(7) + x(5) - (2*x(2) + x(3) + x(4));
y(5) = x(1) + x(2) + x(3) - ...
N_CO2T/(m_T/(x(1)*MW_CO2 + x(2)*MW_CO3 + x(3)*MW_HCO3 + x(4)*MW_OH + ...
x(5)*MW_H3O + x(6)*MW_H2O + x(7)*MW_K));
y(6) = x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) - 1;
y(7) = x(7) - (2*n_K2CO3)/(m_T/(x(1)*MW_CO2 + x(2)*MW_CO3 + x(3)*MW_HCO3 + x(4)*MW_OH + ...
x(5)*MW_H3O + x(6)*MW_H2O + x(7)*MW_K));
2 comentarios
John D'Errico
el 26 de Abr. de 2019
Editada: John D'Errico
el 26 de Abr. de 2019
You should understand that
log10(T)/log10(exp(1))
is equivalent to the simple
log(T)
That is, log(T) is the NATURAL LOG of T?\
As well, why would you do this?
K1 = power(exp(1),lnK1);
You seem to understand that exp(1) yields the number e. So just use
K1 = exp(lnK1);
Respuesta aceptada
Matt J
el 18 de Sept. de 2018
Editada: Matt J
el 18 de Sept. de 2018
But the solution you got solves the equations quite well and also zeros the optimality measure quite well. If the wrong solution solves the equations, then the equations are to blame.
Norm of First-order Trust-region
Iteration Func-count f(x) step optimality radius
0 8 0.959589 1 1
1 16 2.73535e-08 0.901598 2.81e-06 1
2 24 5.66403e-09 0.0230512 1.72e-06 2.25
3 32 1.82444e-11 0.00549156 9.15e-08 2.25
4 40 3.05915e-16 0.000351564 3.73e-10 2.25
5 48 8.60818e-21 0.000134172 3.73e-13 2.25
4 comentarios
Más respuestas (1)
Alex Sha
el 22 de Abr. de 2019
Multi-solutions:
1:
x1: 1.00788811123075E-6
x2: 0.0083586258586415
x3: 0.0330975342164431
x4: 0.000243072462467804
x5: 4.25824266670525E-13
x6: 0.908241901178143
x7: 0.0500578583957681
2:
x1: 0.0398069369652828
x2: 4.09226387610729E-13
x3: -6.59445321197498E-9
x4: -7.80181990889573E-15
x5: -0.0480652696493024
x6: 0.960193076222411
x7: 0.0480652630556597
3:
x1: -0.00867531212733977
x2: 3.28114366134408E-10
x3: 0.0504921742289807
x4: -1.14968645806141E-9
x5: -1.22255237713138E-9
x6: 0.907690964984408
x7: 0.0504921749580755
2 comentarios
Alex Sha
el 28 de Sept. de 2024
Positive solution:
x1: 2.69509999486066E-5
x2: 0.00844390016219942
x3: 0.0329852412877576
x4: 0.000183518150344329
x5: 5.65645880096964E-12
x6: 0.908303829637249
x7: 0.0500565597568442
Ver también
Categorías
Más información sobre Systems of Nonlinear Equations en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!