Could not integral: Infinite or Not-a-Number value encountered
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Chao-Zhen Liu
el 24 de Sept. de 2018
Comentada: Walter Roberson
el 2 de Oct. de 2018
Hi everyone,
Does anyone can tell me what's wrong with my code? I always receives the warnings:
Warning: Infinite or Not-a-Number value encountered.
U = 14; L = 7; d = (U-L)/2;
d_star = d;
T = ( U+L )/(1+1); % symmeric
alpha = 0.10;
Le = 0.05;
for kursi = [0 0.25 0.5 1 2 3]
sigma = fzero( @(sigma) Le - (sigma./d)^2 - ( kursi.*sigma./d).^2, 1 ) ;
mu = kursi*sigma + T;
j = 1;
for n = [25 50 100 150 200]
delta = ( n.^(1/2) ).*kursi ;
B = (n*d_star^2)/sigma^2;
i= 1;
for x = 7:0.01:14
sample = normrnd(mu,sigma,1,n);
% fK = ( 2^(-(n-1)/2)/gamma((n-1)/2) ).*((B.*x.*(1-t)).^(n-3)/2 ).*exp(-B.*x.*(1-t)/2);
fun = @(t) ( sqrt( (B^3).*x./t )./2 ).*( ( 2^(-(n-1)/2) / gamma((n-1)/2) ).*( (B.*x.*(1-t)).^((n-3)/2) ).*exp(-B.*x.*(1-t)/2) ).*( normpdf(sqrt(B*x*T)+delta,0,1) + normpdf(sqrt(B*x*T)-delta,0,1) );
pdf_Lehat(j,i) = integral(@(t) fun(t),0,1);
i = i + 1;
end
j = j + 1;
end
end
x = 7:0.01:14;
plot(x, pdf_Lehat(1,:)); hold on
plot(x, pdf_Lehat(2,:)); hold on
plot(x, pdf_Lehat(3,:)); hold on
plot(x, pdf_Lehat(4,:)); hold on
plot(x, pdf_Lehat(5,:)); hold on
xlabel('X')
I guess the problem may be the handle ,fun, especially the mid part of the code (i.e. the above code, fK). Hope you can give me some advice, thanks!
9 comentarios
Torsten
el 27 de Sept. de 2018
Editada: Torsten
el 27 de Sept. de 2018
In the evaluation of plotfun, you use B=4.0e4, x=14, n=200 and T=10.5.
Now specify a value for t and evaluate all parts of "plotfun" separately for these parameter values for B,x,n and T. See where there might be problems in the evaluation (e.g. gamma((n-1)/2)= gamma(199/2) seems too huge, 2^(-(n-1)/2)=2^(-199/2) seems too small).
Best wishes
Torsten.
Chao-Zhen Liu
el 29 de Sept. de 2018
Editada: Chao-Zhen Liu
el 30 de Sept. de 2018
Respuesta aceptada
Walter Roberson
el 30 de Sept. de 2018
The values of your integral are so small that they cannot be represented in double precision, and can barely be represented in the Symbolic Toolbox either. Values like 2*10^(-87012)
12 comentarios
Walter Roberson
el 2 de Oct. de 2018
Your term exp(-B.*x.*(1-t)/2) is responsible. The -B*x/2 is coming out at about 35000 and the 1-t flips that to about exp(-35000 *t)
Más respuestas (0)
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
