vector index of consecutive gap (NaN) lengths?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi
For a vector A with random, sometime consecutive gaps of NaN, I want to develop a vector B of same length A that will indicate the length of local consecutive gaps for every value in A. B would have zeros for non-NaN locations in A.
so for
A = [2 4 NaN 7 9 NaN NaN NaN 32 NaN NaN 8];
I'd get
B = [0 0 1 0 0 3 3 3 0 2 2 0];
Ideas? Speed is always a virtue.
Thanks!
Tom
2 comentarios
Respuesta aceptada
Sean de Wolski
el 27 de Jun. de 2012
And if you like Ryan's idea but don't like bwlabel because it's evil:
A = [2 4 NaN 7 9 NaN NaN NaN 32 NaN NaN 8];
CC= bwconncomp(isnan(A));
n = cellfun('prodofsize',CC.PixelIdxList);
b = zeros(size(A));
for ii = 1:CC.NumObjects
b(CC.PixelIdxList{ii}) = n(ii);
end
3 comentarios
Sean de Wolski
el 27 de Jun. de 2012
BWCONNCOMP makes BWLABEL irrelevant for everything except LABEL2RGB! For that you have LABELMATRIX to convert from the output of BWCONNCOMP.
Anyway, yes, CC.PixelIdxList contains the indices you need to do most matrix manipulations easily and can be fed directly to REGIONPROPS, all while being faster!
Más respuestas (3)
Ryan
el 27 de Jun. de 2012
Thomas' answer is faster, but here is my go:
A = [2 4 NaN 7 9 NaN NaN NaN 32 NaN NaN 8];
idx = isnan(A);
[B n]= bwlabel(idx);
C = B;
prop = regionprops(idx,'Area');
area = cat(1,prop.Area);
for ii = 1:n
B(C == ii) = area(ii);
end
B
0 comentarios
Andrei Bobrov
el 28 de Jun. de 2012
Editada: Andrei Bobrov
el 30 de Jun. de 2012
A = [2 4 NaN 7 9 NaN NaN NaN 32 NaN NaN 8];
a = isnan(A);
t1 = find([true, diff(a)~=0]);
N = diff(t1);
out = zeros(size(A));
V = regionprops(a,'PixelIdxList');
out(cat(1,V.PixelIdxList)) = cell2mat(arrayfun(@(x)x*ones(x,1),N(a(t1))','un',0));
OR
A = [2 4 NaN 7 9 NaN NaN NaN 32 NaN NaN 8];
a = isnan(A);
n1 = regionprops(a,'Area');
out = a + 0;
out(a) = cell2mat(arrayfun(@(x)x*ones(1,x),[n1.Area],'un',0));
ADD variant
a = isnan(A);
t = [true,diff(a)~=0];
k = diff(find([t,true]));
k2 = k.*a(t);
out = k2(cumsum(t));
0 comentarios
Thomas
el 27 de Jun. de 2012
A very crude way.. pretty sure can be done better...
A = [2 4 NaN 7 9 NaN NaN NaN 32 NaN NaN 8];
A(~isnan(A))=0;
A(isnan(A))=1;
c=diff(A);
start=find(c==1)+1;
stop=find(c==-1)+1;
out=stop-start;
for ii=1:length(out)
A(start(ii):(stop(ii)-1))=out(ii);
end
A
5 comentarios
Thomas
el 29 de Jun. de 2012
another iteration here NaN can be first,last or anywhere in the middle.. 'hopefully'
A = [NaN 4 NaN 7 9 NaN NaN NaN 32 NaN NaN 8];
A(~isnan(A))=0;
A(isnan(A))=1;
c=diff(A);
start=find(c==1)+1;
stop=find(c==-1)+1;
if length(stop)<length(start)
stop=[stop start(end)+1];
end
if length(start)<length(stop)
start=[start(1)-1 start];
end
out=stop-start;
for ii=1:length(out)
A(start(ii):(stop(ii)-1))=out(ii);
end
A
Ver también
Categorías
Más información sobre Data Distribution Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!