Patch or Fill between upper and lower bounds

5 visualizaciones (últimos 30 días)
Campbell Dorotich
Campbell Dorotich el 6 de Oct. de 2018
Editada: israt fatema el 21 de Feb. de 2023
Hello Mathworks community,
I am looking to plot my upper and lower bounds with a shaded format (grey) instead of its current dotted line - no shading appearance(refer to attached image of an example). I am currently using the Gaussian Process Regression method and this would help significantly to highlight the error involved- please refer to my code provided below excluding the patch function (data is in N by 1):
Code:
tbl = readtable('m1.data.xlsx');
tbl.Properties.VariableNames = {'Temperature','Humidity','Mode1'};
gprMdl1 = fitrgp(tbl,'Mode1','KernelFunction','exponential',...
'FitMethod','Exact','PredictMethod','fic','Standardize',1);
[ytestpred,~,ytestci] = predict(gprMdl1,tbl,'Alpha',0.01);
figure();
plot(tbl.Mode1,'r','LineWidth',0.5);
hold on
plot(ytestpred,'b');
plot(ytestci(:,1),'k:');
plot(ytestci(:,2),'k:');
legend('Actual response','GPR predictions',...
'95% lower','95% upper','Location','Best');
hold off
Any help would be much appreciated.
Cheers, Cam

Respuestas (1)

Star Strider
Star Strider el 6 de Oct. de 2018
I am not certain what you want, or what you are referring to.
One option for the grey line:
x = 0:63;
y = sin(x/10);
figure
plot(x, y, '-k', 'LineWidth',2, 'Color',[1 1 1]*0.85) % Plot Grey Line
figure
patch([x(:); flipud(x(:))]', [y(:)+0.1; flipud(y(:)-0.1)]', 'k', 'FaceAlpha',0.2) % Plot ‘patch’ Object
figure
patch([x(:); flipud(x(:))]', [y(:)+0.1; flipud(y(:)-0.1)]', 'k', 'FaceAlpha',0.2, 'EdgeColor','none') % Plot ‘patch’ Object, No Edges
Experiment to get the result you want.
  6 comentarios
Star Strider
Star Strider el 6 de Oct. de 2018
My pleasure.
If my Answer helped you solve your problem, please Accept it!
israt fatema
israt fatema el 21 de Feb. de 2023
Editada: israt fatema el 21 de Feb. de 2023
@Campbell Dorotich @Star Strider Hi, this is a very useful solution for my problem. I would like to know if you also done some evaluation for your prediction interval/GPR ? I have been looking for the answer how do i qualitatively evaluate Prediction interval accuracy using GPR? TIA

Iniciar sesión para comentar.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by