LDA analysis: The pooled covariance matrix of TRAINING must be positive definite.
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello, I am running into this issue. How can I resolve it?
Y = csvread('mydata.csv'); flag = Y(:,1); label = Y(:,2); P = Y(:,3:end); train = Y((flag < 5) & (label == 8|9),:); test = Y((flag == 5) & (label == 0),:);
[coeff,score,latent] = pca(train); group = Y((flag < 5) & (label == 8|9)); class = classify(Y,train,group,'linear');
My research online gives me some hints that I should apply PCA to the training samples and project onto the first 2 principal components. Then, apply LDA to project onto 1 dimension.
How can I take the result of PCA and input it as a parameter in classify()?
Thank you!
0 comentarios
Respuestas (1)
Fadi Alsuhimat
el 6 de Jul. de 2020
Just write it like this
augmentedTrainset=augmentedImageDatastore(imagesize,...
trainset,'ColorPreprocessing','gray2rgb');
%%% this mean you add another type for lda by using 'ColorPreprocessing','gray2rgb'
0 comentarios
Ver también
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!