LDA analysis: The pooled covariance matrix of TRAINING must be positive definite.

3 visualizaciones (últimos 30 días)

Hello, I am running into this issue. How can I resolve it?

Y = csvread('mydata.csv');
flag = Y(:,1);
label = Y(:,2);
P = Y(:,3:end);
train = Y((flag < 5) & (label == 8|9),:);
test = Y((flag == 5) & (label == 0),:);
[coeff,score,latent] = pca(train);
group = Y((flag < 5) & (label == 8|9));
class = classify(Y,train,group,'linear');

My research online gives me some hints that I should apply PCA to the training samples and project onto the first 2 principal components. Then, apply LDA to project onto 1 dimension.

How can I take the result of PCA and input it as a parameter in classify()?

Thank you!

Respuestas (1)

Fadi Alsuhimat
Fadi Alsuhimat el 6 de Jul. de 2020
Just write it like this
augmentedTrainset=augmentedImageDatastore(imagesize,...
trainset,'ColorPreprocessing','gray2rgb');
%%% this mean you add another type for lda by using 'ColorPreprocessing','gray2rgb'

Categorías

Más información sobre Statistics and Machine Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by