How to use integral2 when the integrand is a array?
    3 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Henan Fang
 el 2 de Nov. de 2018
  
    
    
    
    
    Comentada: Henan Fang
 el 2 de Nov. de 2018
            (x,y) is a generated integrand as the following codes. d is a parameter in Tuu. I want to get a set of value of the integration "integral2(@Tuu,0,pi/2,0,pi/4)" with different values of d. And thus I set d=1e-9:1e-10:3e-9 as in the codes. However the codes "integral2(@Tuu,0,pi/2,0,pi/4)" gives the error "insufficient number of inputs". Why? How to solve this problem? Many thanks!
The codes of Tuu(x,y) are as following:
function U=Tuu(x,y)
d=1e-9:1e-10:3e-9;
mu=8;
delta=10;
vh=16;
HBAR=1.05457266e-34;
ME=9.1093897e-31;
ELEC=1.60217733e-19;
Kh=2.116e10;
kc=sqrt(2.*ME.*ELEC./HBAR.^2);
ku=kc.*sqrt(mu+delta);
kd=kc.*sqrt(mu-delta);
puu1=sqrt(ku.^2-ku.^2.*sin(x).^2+kc.^2.*vh);
puu2=sqrt(ku.^2-ku.^2.*sin(x).^2-kc.^2.*vh);
quu1=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2+kc.^2.*vh);
quu2=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2-kc.^2.*vh);
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));
end
1 comentario
  Walter Roberson
      
      
 el 2 de Nov. de 2018
				>> integral2(@Tuu,0,pi/2,0,pi/4)
Matrix dimensions must agree.
Error in Tuu (line 17)
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));
Respuesta aceptada
  Walter Roberson
      
      
 el 2 de Nov. de 2018
        d=1e-9:1e-10:3e-9;
output = arrayfun(@(D) integral2(@(x,y) Tuu(x, y, D), 0,pi/2,0,pi/4,'reltol', 2e-4), d);
function U=Tuu(x, y, d)
mu=8;
delta=10;
vh=16;
HBAR=1.05457266e-34;
ME=9.1093897e-31;
ELEC=1.60217733e-19;
Kh=2.116e10;
kc=sqrt(2.*ME.*ELEC./HBAR.^2);
ku=kc.*sqrt(mu+delta);
kd=kc.*sqrt(mu-delta);
puu1=sqrt(ku.^2-ku.^2.*sin(x).^2+kc.^2.*vh);
puu2=sqrt(ku.^2-ku.^2.*sin(x).^2-kc.^2.*vh);
quu1=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2+kc.^2.*vh);
quu2=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2-kc.^2.*vh);
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));
end
If you try to use a smaller relative tolerance then you will get warning messages about using too many iterations. Your integrals are in the range of 2E20 so they do not converge well.
Más respuestas (0)
Ver también
Categorías
				Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

