Solving the Ordinary Differential Equation

4 visualizaciones (últimos 30 días)
Yeahh
Yeahh el 15 de Nov. de 2018
Editada: madhan ravi el 15 de Nov. de 2018
I am not sure how to solve these systems of differential equation. However, the final graph representation of the result is two exponential curves for and in respect to time.
Also, with =, the variable ks and BP are all constant.

Respuesta aceptada

madhan ravi
madhan ravi el 15 de Nov. de 2018
Editada: madhan ravi el 15 de Nov. de 2018
EDITED
use dsolve()
or
Alternate method using ode45:
Screen Shot 2018-11-15 at 11.17.17 AM.png
tspan=[0 1];
y0=[0;0];
[t,x]=ode45(@myod,tspan,y0)
plot(t,x)
lgd=legend('Cp(t)','Cr(t)')
lgd.FontSize=20
function dxdt=myod(t,x)
tau=2;
ks=3;
BP=6;
k1=5;
k2=7;
x(1)=exp(-t)/tau; %x(1)->Cp
dxdt=zeros(2,1);
dxdt(1)=k1*x(1)-(k2/(1+BP))*x(2); %x(2)->Cr
dxdt(2)=k1*x(1)-k2*x(2);
end
  9 comentarios
Yeahh
Yeahh el 15 de Nov. de 2018
Editada: madhan ravi el 15 de Nov. de 2018
Thank you so much, I have one last question.
What doest this line means?
dxdt=zeros(2,1);
madhan ravi
madhan ravi el 15 de Nov. de 2018
Editada: madhan ravi el 15 de Nov. de 2018
Anytime :), It is called preallocation(please google it) imagine as a container to store something. Make sure to accept for the answer if it was helpful.

Iniciar sesión para comentar.

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by