
Solving the Ordinary Differential Equation
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Yeahh
el 15 de Nov. de 2018
Editada: madhan ravi
el 15 de Nov. de 2018
I am not sure how to solve these systems of differential equation. However, the final graph representation of the result is two exponential curves for
and
in respect to time.
Also, with
=
, the variable ks and BP are all constant.
0 comentarios
Respuesta aceptada
madhan ravi
el 15 de Nov. de 2018
Editada: madhan ravi
el 15 de Nov. de 2018
EDITED
use dsolve()
or
Alternate method using ode45:

tspan=[0 1];
y0=[0;0];
[t,x]=ode45(@myod,tspan,y0)
plot(t,x)
lgd=legend('Cp(t)','Cr(t)')
lgd.FontSize=20
function dxdt=myod(t,x)
tau=2;
ks=3;
BP=6;
k1=5;
k2=7;
x(1)=exp(-t)/tau; %x(1)->Cp
dxdt=zeros(2,1);
dxdt(1)=k1*x(1)-(k2/(1+BP))*x(2); %x(2)->Cr
dxdt(2)=k1*x(1)-k2*x(2);
end
9 comentarios
madhan ravi
el 15 de Nov. de 2018
Editada: madhan ravi
el 15 de Nov. de 2018
Anytime :), It is called preallocation(please google it) imagine as a container to store something. Make sure to accept for the answer if it was helpful.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!