How to use trained neural network as function using MATLAB coder?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I've trained a simple neural network that just multiply 4 numbers and gives 1 number as an output.
( output(x0) = in1(x0)*in2(x0)*in3(x0) *in4(x0)).
or description:
My neural net has 4 inputs, and 1 output, [10 10] is the hidden layer. I used 'genFunction' to generate a .m file out of network.then I used MATLAB coder to generate C++ function. I generate the code with following input types: input types:
My problem is when I test the C++ code it only gives the 2 first samples for the output.
I store my entries in a std:: vector which has size of 400 (each input size is 100)
I've done the following so far (no desirable output though):
std::vector<double> Multiplier(std::vector<double>& input)
{
double* X_data = new double[input.size()];
X_data = vec2ar(input);
int X_size[2];
X_size[0] = 4;
X_size[1] = 100;
double* Y_data = new double[input.size()];
int Y_size[100];
While the original was:
void multiplier(const double X_data[], const int X_size[2], double Y_data[], int Y_size[2])
{
double Xp1_data[800];
int Xp1_size[2];
int j;
double a1_data[2000];
int coffset;
int a1_size[2];
int boffset;
double tmp_data[2000];
int k;
double b_a1_data[2000];
And for getting the output:
std::vector<double> output;
output = ar2vec(Y_data);
return output;
All I want is we have 4 vectors and give them to this function simply just multiply corresponding samples as shown in 'description' (in my case we have 4 vectors of size 100, and we expect an output with size 100).
And for ar2vec and vec2ar functions:
std::vector<double> ar2vec(double arr[])
{std::vector<double> vec;
copy(&arr[0], &arr[100], std::back_inserter(vec));
return vec;
}
double* vec2ar(std::vector<double> vec){
double * arr = new double[vec.size()];
copy(vec.begin(), vec.end(), arr);
return arr;
}
Could you please help me to fix my problem?
Regards.
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Code Generation Fundamentals en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!