discontinuous differential equations using inverse z transform?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have a continuse system of sys, where I would like to get a discontinious system in differential equation format.
s=tf('s')
sys = s/(s-1)^2
sysz = c2d(sys,1)
so from this I get:
sysz =
2.718 z - 2.718
---------------------
z^2 - 5.437 z + 7.389
but I would like to get an answer like this:
2.718 x[n-1] - 2.718 x[n-2] = y[n] - 5.437 y[n-1] + 7.389 y[n-2]
So, I tried to use iztrans by converting the transfer function to a fractional format but did not work!
syms z
sysznew = (2.718 *z - 2.718)/(z^2 - 5.437 *z + 7.389)
iztrans(sysznew)
I get a very complicated response of:
ans =
(5436*(-1)^n*7389^n*cos(n*(pi - acos((5437*8210^(1/2))/492600))))/(5437*(30*8210^(1/2))^n) - (302*kroneckerDelta(n, 0))/821 - (25388838*(-1)^n*1000^(1 - n)*4969^(1/2)*(- 4969^(1/2)/2 - 5437/2)^(n - 1))/27016453 + (25388838*(-1)^n*1000^(1 - n)*4969^(1/2)*(4969^(1/2)/2 - 5437/2)^(n - 1))/27016453
Anyone who knows how this works?
Thanks,
0 comentarios
Respuestas (1)
Paul
el 15 de Dic. de 2024
Editada: Paul
el 15 de Dic. de 2024
It appears the goal is to derive a difference equation from the corresponding, discrete-time, transfer function.
Define the transfer function
syms z n y(n) x(n) Y(z) X(z)
H(z) = vpa((2.718 *z - 2.718)/(z^2 - 5.437 *z + 7.389)),pretty(H(z))
If we just take the iztrans(H(z)), we get exactly that, i.e., the impulse response.
Deriving the difference equation representation of that transfer function takes a little bit of work.
Get the numerator and denominator of H(z) and define the algebraic relationship between X(z) and Y(z) defined by the transfer function
[num,den] = numden(H(z));
eqn = Y(z)*den == X(z)*num,disp(char(eqn))
Take the iztrans of both sides
eqn = iztrans(eqn,z,n),disp(char(eqn))
Define Y(z) and X(z) as being the z-transforms of y[n] and x[n] respectively and sub back into the equation
Y(z) = ztrans(y(n),n,z); X(z) = ztrans(x(n),n,z);
eqn = subs(eqn),disp(char(eqn))
Set all initial conditions to 0
eqn = subs(eqn,[y(0),y(1),x(0)],[0, 0, 0]),disp(char(eqn))
Reindex into the desired form
eqn = subs(eqn,n,n-2),disp(char(eqn))
Set the coeffiicient of y[n] to unity. There should be a more robust way to do this, but here we know we can divide by exactly 1000.
eqn = vpa(eqn/1000),disp(char(eqn))
0 comentarios
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!