Speeding up solution to system of ODES

3 visualizaciones (últimos 30 días)
Riaz Patel
Riaz Patel el 17 de Dic. de 2018
Comentada: Torsten el 19 de Dic. de 2018
Hi all,
function [y] = H2HWCF(u,S0,T,tau,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr)
cf = @(t) (1/(4*k))*sigma^2*(1-exp(-k*t));
d = (4*k*vb)/(sigma^2);
lambdaf = @(t) (4*k*v0*exp(-k*t))./(sigma^2*(1-exp(-k*t)));
lambdaC = @(t) sqrt(cf(t).*(lambdaf(t)-1) + cf(t)*d + (cf(t)*d)./(2*(d+lambdaf(t))));
D1 = @(u) sqrt((sigma*pxv*1i*u-k).^2 - sigma^2*1i*u.*(1i*u-1));
g = @(u) (k-sigma*pxv*1i*u - D1(u))./(k-sigma*pxv*1i*u + D1(u));
B = @(u,tau) 1i*u;
C = @(u,tau) (1i*u-1)*(1/lambda)*(1-exp(-lambda*tau));
D = @(u,tau) ((1 -exp(-D1(u)*tau))./(sigma^2*(1-g(u).*exp(-D1(u)*tau)))).*(k-sigma*pxv*1i*u-D1(u));
%ODE's that are solved numerically
muxi = @(t) (1/(2*sqrt(2)))*(gamma(0.5*(1+d))/sqrt(cf(t)))*...
(hypergeom(-0.5,0.5*d,-0.5*lambdaf(t))*(1/gamma(0.5*d))*sigma^2*exp(-k*t)*0.5 + ...
hypergeom(0.5,1+0.5*d,-0.5*lambdaf(t))*(1/gamma(1+0.5*d))*((v0*k)/(1-exp(k*t))));
phixi = @(t) sqrt(k*(vb-v0)*exp(-k*t) - 2*lambdaC(t)*muxi(t));
EAODE = @(tau,y) [pxr*eta*B(u,tau)*C(u,tau) + phixi(T-tau)*pxv*B(u,tau)*y(1) + sigma*phixi(T-tau)*D(u,tau)*y(1);
k*vb*D(u,tau) + lambda*theta*C(u,tau) + muxi(T-tau)*y(1)+eta^2*0.5*C(u,tau)^2 + (phixi(T-tau))^2*0.5*y(1)^2];
[tausol, ysol] = ode23(EAODE,[0 T],[0 0]);
E = ysol(end,1);
A = ysol(end,2);
y = exp(A+B(u,tau)*log(S0)+C(u,tau)*r0+D(u,tau)*v0 + E*sqrt(v0));
end
In this function, i have closed form solutions for B,C,D. this is not possible for E and A. So these are solved as a system of ODEs. I am solving the ODES from [0,T] with initial conditions at t = 0. I only need the values for E and A and time T though.
The problem im having is that i have to take this function and integrate it. Im using trapz to do my integration. I have to obviously evulate this function many times in order to get an accurate approximation for the integral. This is taking too long because of the ODE's that need to be solved. Is there anyway for me to speed up the run time?
Thanks!
  4 comentarios
madhan ravi
madhan ravi el 17 de Dic. de 2018
Editada: madhan ravi el 17 de Dic. de 2018
B(u,0)=iu initial condition?
Riaz Patel
Riaz Patel el 17 de Dic. de 2018
Yes. why?

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 18 de Dic. de 2018
Editada: Torsten el 18 de Dic. de 2018
function main
%Parameters
%Heston Parameters
S0 = 100;
K = 100;
T = 1;
k = 2.5;
sigma = 0.5;
v0 = 0.06;
vb = 0.06;
%Hull-White parameters
lambda = 0.05;
r0 = 0.07;
theta = 0.07;
eta = 0.01;
%correlations
pxv = - 0.3;
pxr = 0.2;
pvr = 0;
%MC parameters
N = 200;
dt = T/N;
t = (0:dt:T);
n = 100000;
alpha = 0.75;
vmax = 250;
H2HWCFtemp = @(u) H2HWCF(u,S0,T,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr);
psi = @(v,y) (H2HWCFtemp(v-(alpha+1)*1i))./(alpha^2+alpha-v.^2+1i*(2*alpha+1)*v);
% Integrate psi from v=0 to v=vmax
[V,PSI]=ode15s(psi,[0 vmax],0);
% Display integral_{v=0}^{v=vmax} psi(v) dv
V(end,1)
end
function y = H2HWCF(u,S0,T,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr)
[tausol, ysol] = ode15s(@(tau,y)EAODE(tau,y,u,S0,T,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr),[0 T],[0 0]);
E = ysol(end,1);
A = ysol(end,2);
D1 = sqrt((sigma*pxv*1i*u-k).^2 - sigma^2*1i*u.*(1i*u-1));
g = (k-sigma*pxv*1i*u - D1)./(k-sigma*pxv*1i*u + D1);
B = 1i:u;
C = (1i*u-1)*(1/lambda)*(1-exp(-lambda*T));
D = ((1 -exp(-D1*T))./(sigma^2*(1-g.*exp(-D1*T)))).*(k-sigma*pxv*1i*u-D1);
y = exp(A+B*log(S0)+C*r0+D*v0 + E*sqrt(v0));
end
function dy = EAODE(tau,y,u,S0,T,k,sigma,v0,vb,lambda,r0,theta,eta,pxv,pxr)
cf = (1/(4*k))*sigma^2*(1-exp(-k*(T-tau)));
d = (4*k*vb)/(sigma^2);
lambdaf = (4*k*v0*exp(-k*(T-tau)))./(sigma^2*(1-exp(-k*(T-tau))));
lambdaC = sqrt(cf.*(lambdaf-1) + cf*d + (cf*d)./(2*(d+lambdaf)));
D1 = sqrt((sigma*pxv*1i*u-k).^2 - sigma^2*1i*u.*(1i*u-1));
g = (k-sigma*pxv*1i*u - D1)./(k-sigma*pxv*1i*u + D1);
B = 1i*u;
C = (1i*u-1)*(1/lambda)*(1-exp(-lambda*tau));
D = ((1 -exp(-D1*tau))./(sigma^2*(1-g.*exp(-D1*tau)))).*(k-sigma*pxv*1i*u-D1);
muxi = (1/(2*sqrt(2)))*(gamma(0.5*(1+d))/sqrt(cf))*...
(hypergeom(-0.5,0.5*d,-0.5*lambdaf)*(1/gamma(0.5*d))*sigma^2*exp(-k*(T-tau))*0.5 + ...
hypergeom(0.5,1+0.5*d,-0.5*lambdaf)*(1/gamma(1+0.5*d))*((v0*k)/(1-exp(k*(T-tau)))));
phixi = sqrt(k*(vb-v0)*exp(-k*(T-tau)) - 2*lambdaC*muxi);
dy = zeros(2,1);
dy(1) = pxr*eta*B*C + phixi*pxv*B*y(1) + sigma*phixi*D*y(1);
dy(2) = k*vb*D + lambda*theta*C + muxi*y(1)+eta^2*0.5*C^2 + phixi^2*0.5*y(1)^2;
end
  6 comentarios
Riaz Patel
Riaz Patel el 19 de Dic. de 2018
Just an update, i get these sorts of errors when i use ode15s.
Warning: Failure at t=1.000000e+00. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (1.776357e-15) at time t.
> In ode15s (line 668)
I also get slightly different answers with the two solvers. how do i determine which one is more accurate for this specific system of odes?
Torsten
Torsten el 19 de Dic. de 2018
You will have to play with the solvers to see which one is the most appropriate for your problem. Usually, ODE15S is most accurate, but slower for non-stiff problems.
I suggested to circumvent application of "trapz" by using ODE15S also to integrate psi (or your "fintegrand" from above). This may save computation time because the ODE solver chooses its step in "v" automatically according to the tolerance you have chosen. At the moment, you "blindly" use 2500 function evaluation for psi. I leave it to you which method you prefer to implement.
Best wishes
Torsten.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by