Feature Extraction using deep autoencoder
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have filtered my ecg signal of 108000*1 length and then divided into blocks using window size of 64 samples each. Now i need to extract feature from each window using deep autoencoder in MATLAB. any help or idea how can i perform this? Thanks in advance.
0 comentarios
Respuestas (1)
BERGHOUT Tarek
el 11 de Abr. de 2019
1) you must create a data set of this windows , dataset =[window1;window2; window3 ...................].
2) train these dataset with an AES.
3) the hidden layer will be your new extructed dataset;
2 comentarios
Shankar Parmar
el 4 de Mzo. de 2022
Sir,
How can I extract this Hidden Layer in MATLAB using
trainAutoencoder command.
arahiche
el 28 de Sept. de 2023
Editada: arahiche
el 28 de Sept. de 2023
To access the extracted features you need to use encode function.
here is an example;
hiddenSize = 100; % for example
AE_model = trainAutoencoder(Input_data,hiddenSize);
% you can view you model using this function
view(AE_model)
% To access the latent code generated
features = encode(AE_model,Input_data);
Ver también
Categorías
Más información sobre Pattern Recognition and Classification en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!