First order partial differential equations system - Numerical solution

20 visualizaciones (últimos 30 días)
Hello everyone!
I would like to solve a first order partial differential equations (2 coupled equations) system numerically. I just want to make sure that my thoughts are correct.
So firstly, I will start by doing a discretization to each of the two equations and then I will use ode15s to solve the ordinary differential equations that I got from the first step. Am I right? Which method of discretization do you recommend me to use?
Note: My equations are similar to the linear advection equation but with a source term.
Thank you very much.
Malak
  2 comentarios
Torsten
Torsten el 16 de En. de 2019
Start with first-order upwind.
Malak Galal
Malak Galal el 18 de En. de 2019
Editada: Malak Galal el 18 de En. de 2019
Thank you very much for your reply.
Is there any document or website that could be of use to me?
I am a bit lost because I have been trying to understand how to use the upwind method to solve my system, but I couldn't really find anything similar to my system. I saw some examples about the advection equation, but they all deal with one equation and with no source term.
My problem is that the source terms in my system couple the two equations.
I would appreciate your help very much! Thanks in advance.
Malak

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 18 de En. de 2019
Editada: Torsten el 18 de En. de 2019
%program solves
% dy1/dt + v1*dy1/dx = s1*y1*y2
% dy2/dt + v2*dy2/dx = s2*y1*y2
% y1(0,x) = y2(0,x) = 0
% y1(t,1) = y2(t,0) = 1
% for 0 <= t <= 400
function main
nx = 500;
y1 = zeros(nx,1);
y1(end) = 1.0;
y2 = zeros(nx,1);
y2(1) = 1.0;
ystart = [y1;y2];
tstart = 0.0;
tend = 400;
nt = 41;
tspan = linspace(tstart,tend,nt);
xstart = 0.0;
xend = 1.0;
x = linspace(xstart,xend,nx);
x = x.';
v1 = -0.005;
v2 = 0.0025;
v = [v1 v2];
s1 = 3.0e-3;
s2 = -4.0e-3;
s = [s1 s2];
[T,Y] = ode15s(@(t,y)fun(t,y,nx,x,v,s),tspan,ystart);
plot(x,Y(20,1:nx), x,Y(20,nx+1:2*nx))
end
function dy = fun(t,y,nx,x,v,s)
y1 = y(1:nx);
y2 = y(nx+1:2*nx);
dy1 = zeros(nx,1);
dy2 = zeros(nx,1);
dy1(1:nx-1) = -v(1)*(y1(2:nx)-y1(1:nx-1))./(x(2:nx)-x(1:nx-1)) + s(1)*y1(1:nx-1).*y2(1:nx-1);
dy1(nx) = 0.0;
dy2(1) = 0.0;
dy2(2:nx) = -v(2)*(y2(2:nx)-y2(1:nx-1))./(x(2:nx)-x(1:nx-1)) + s(2)*y1(2:nx).*y2(2:nx) ;
dy = [dy1;dy2];
end
  12 comentarios
Malak Galal
Malak Galal el 31 de En. de 2019
Okay. Thank you very much for your help!
Sreejath S
Sreejath S el 26 de Oct. de 2020
Hi Torsten,
Sorry for commenting on this post, rather than asking my own question. I have a very similar system of coupled first order hyperbolic PDES. But my system has a major diference from the example code you posted.
The first equation has dy1/dt and dy2/dx, and the second equation has dy2/dt and dy1/ds. Kindly note the change (marked bold) in the following lines from the original problem you posted:
% dy1/dt + v1*dy2/dx = s1*y1*y2
% dy2/dt + v2*dy1/dx = s2*y1*y2
% y1(0,x) = y2(0,x) = 0
% y1(t,1) = y2(t,0) = 1
% for 0 <= t <= 400
Can this type of coupled problem be solved using MOL?
I ran the code with this change, but I could not get a solution. The solution is not converging.Kindly help in this regard.
Sincerly,
Sreejath

Iniciar sesión para comentar.

Más respuestas (3)

Malak Galal
Malak Galal el 21 de En. de 2019
Hi Torsten,
Thank you very much for your help!
Malak

Malak Galal
Malak Galal el 22 de Feb. de 2019
Hi Torsten,
I have a question concerning the number of points in space and time (nx and nt). Using a proper discretization method, if I want to use for instance nx=1e5, does nt have to be the same as nx or close to it? It seems to me that when I increase the number of points in space, the number of points in time have to be increased as well. Could you please help me understand the relationship between nx and nt?
Thank you very much!
Malak
  1 comentario
Torsten
Torsten el 22 de Feb. de 2019
Hello Malak,
nx and nt can be chosen completely independent from each other.
Best wishes
Torsten.

Iniciar sesión para comentar.


Raghunath
Raghunath el 18 de En. de 2025
dy/dx+3x=0,y{0)=1
  1 comentario
Torsten
Torsten el 18 de En. de 2025
Editada: Torsten el 18 de En. de 2025
Do you know the antiderivatives y(x) of -3*x ? Can you adjust it such that y(0) = 1 ?

Iniciar sesión para comentar.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by