Solving a nonlinear ODE with derivative squared
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Travis
el 1 de Feb. de 2019
Comentada: Bill Greene
el 4 de Feb. de 2019
I'm trying to solve a nonlinear ODE which looks something like this:
. I know I can use the implicit solver ode15i but the problem is also stiff so I'd prefer to use ode15s. Is it possible to solve this type of nonlinear ode using ode15s? Any suggestions would be appreciated, thank you!
2 comentarios
Torsten
el 4 de Feb. de 2019
As for all quadratic equations, there are two solutions for y'. Do you know which one you'll have to take ?
Bill Greene
el 4 de Feb. de 2019
ode15i is based on backward differentiation formulas so I would expect it to be as effective as ode15s for stiff problems. That has also been my experience with the two solvers. Do you have an example stiff ODE where this is not the case?
Respuesta aceptada
Star Strider
el 1 de Feb. de 2019
Editada: Star Strider
el 3 de Feb. de 2019
One approach:
syms a b c d y(t) T Y
Dy = diff(y);
DE = a*Dy^2 + b*Dy + c*y == d;
isoDE = isolate(DE,Dy)
[VF,Sbs] = odeToVectorField(isoDE)
odefcn = matlabFunction(VF, 'Vars',{T,Y,a b c d});
odefcn = @(T,Y,a,b,c,d)[((b+sqrt(a.*d.*4.0+b.^2-a.*c.*Y(1).*4.0)).*(-1.0./2.0))./a; ((b-sqrt(a.*d.*4.0+b.^2-a.*c.*Y(1).*4.0)).*(-1.0./2.0))./a]
a = 3;
b = 5;
c = 7;
d = 11;
[T,Y] = ode15s(@(T,Y)odefcn(T,Y,a,b,c,d), [0 5], [0;0]);
figure
plot(T, Y)
grid
It works!
2 comentarios
Star Strider
el 3 de Feb. de 2019
As always, my pleasure!
I‘m not sure if it’s possible express systems of PDEs in the Symbolic Math Toolbox.
You most likelly need the Partial Differential Equation Toolbox (link). I haven’t used it recently, so I have no recent experience with it.
Más respuestas (0)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!