Plotting implicit equation with fimplicit

7 visualizaciones (últimos 30 días)
Jay
Jay el 11 de Feb. de 2019
Comentada: Torsten el 11 de Feb. de 2019
Hello
I have tried to plot this implicit equation. But when I tried it, the plot is showing empty.
Here is the code I used to plot. Could anyone help me with this.
Thanks in advance
clc
syms f(x,y)
n = 8;
a1 = 1.0086*y - 0.9216*(x - y);
b1 = 1.0107*(-x) - 1.0086*(y);
c1 = 0.9216*(x - y) - 1.0107*(-x);
h1 = 0.5877*(161.65);
I3 = ((a1.* b1.*c1)/(54))-((b1.*(h1.^2))/(6));
I2 = ((h1.^2)/(3))+((a1.^2 + b1.^2 + c1.^2)/(54));
th = acos(I3/(I2.^(3/2)));
v1 = ((2*th)+pi)/6;
an1 = (abs(2*cos(v1)))^n;
an2 = (abs(2*cos((2*th+3*pi)/6)))^n;
an3 = (abs(2*cos((2*th+5*pi)/6)))^n;
f(x,y) = ((3*I2).^(n/2)) * (an1 + an2 + an3) - (2*(189.32)^8);
fimplicit(f)

Respuesta aceptada

Torsten
Torsten el 11 de Feb. de 2019
function main
fimplicit (@(x,y)f(x,y))
end
function fun = f(x,y)
n = 8;
a1 = 1.0086*y - 0.9216*(x - y);
b1 = 1.0107*(-x) - 1.0086*(y);
c1 = 0.9216*(x - y) - 1.0107*(-x);
h1 = 0.5877*(161.65);
I3 = ((a1.* b1.*c1)/(54))-((b1.*(h1.^2))/(6));
I2 = ((h1.^2)/(3))+((a1.^2 + b1.^2 + c1.^2)/(54));
th = acos(I3./(I2.^(3/2)));
v1 = ((2*th)+pi)/6;
an1 = (abs(2*cos(v1))).^n;
an2 = (abs(2*cos((2*th+3*pi)/6))).^n;
an3 = (abs(2*cos((2*th+5*pi)/6))).^n;
fun = ((3*I2).^(n/2)).* (an1 + an2 + an3) - (2*(189.32)^8);
end
Resonable limits for plotting are required - no zeros are found in the default range [-5:5] for x and y.
  6 comentarios
Jay
Jay el 11 de Feb. de 2019
Editada: Jay el 11 de Feb. de 2019
Hello Torsten
It works. But it is not working with other limits. Can you explain why so?
Thank you.
Torsten
Torsten el 11 de Feb. de 2019
It "works" as long as the object is contained in the box defined by the specified limits for x and y.

Iniciar sesión para comentar.

Más respuestas (1)

John D'Errico
John D'Errico el 11 de Feb. de 2019
Editada: John D'Errico el 11 de Feb. de 2019
Easy enough. Try this, for example.
vpasolve(f(1,y))
ans =
-80.224189505722446658042301607259
vpasolve(f(-20,y))
ans =
63.634253282860063957543062643774
Hmm. So [1,-80] is roughly a solution. That should be a good hint as to where to have fimplicit look.
fimplicit(f,[-150,150,-150,150])
axis equal
grid on
The problem was fimplicit looks by default in a rather narrow set of limits on x and y. It cannot know where it SHOULD be looking, and computer programs can sometimes be so clueless. Since fimplicit just found no solutions at all in the domain it was looking by default, you saw an empty figure. Sometimes you need to give even a computer a nudge in the right direction.

Categorías

Más información sobre 2-D and 3-D Plots en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by