The effects of parametrization in ODE

5 visualizaciones (últimos 30 días)
Tigist Beyene
Tigist Beyene el 14 de Feb. de 2019
Comentada: Tigist Beyene el 15 de Feb. de 2019
Below is a parametrized equation for an Initial value problem of an ODE.
where p is model parameter. The first order solution with respect to the model
parameter p is defined as:
, So now becomes:
with . I rewrite Van der Pol Oscillator equation interms the new variable S.
, Here p is depicted as μ
I need help on how to write (atleast how can I begin) the code which solves the above ODE problem. My main aim is to show how the parameter affects the original ode equation (by showing the graph of or vs t)
  2 comentarios
madhan ravi
madhan ravi el 15 de Feb. de 2019
See the examples in the documentation
doc ode45
Do a trial and error and come up with the code.
Tigist Beyene
Tigist Beyene el 15 de Feb. de 2019
I have many variables/ constants in this sense. If it is about S and t , I can do it using ode45. But now i do not know how to relate y1 and y2 with S in my coding.

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by