using 'fsolve'
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Harry Jones
el 21 de Mzo. de 2019
Editada: Harry Jones
el 23 de Mzo. de 2019
I have the function f(x,y) = x.^(2-x.^(0.5))+y.^(2-y.^(0.5)) and I found the Jacobian and Hessian Matrices. Now I need to find the turning point using the function "fsolve" and stating its nature.
Can anyone help me?
Thanks in advance.
1 comentario
Walter Roberson
el 21 de Mzo. de 2019
The "turning points" are all the points where the derivative are 0.
You already have the derivative when you formed the Jocobian.
Respuesta aceptada
Stephan
el 21 de Mzo. de 2019
Hi,
why not solve it symbolic:
syms f(x,y)
f(x,y) = x.^(2-x.^(0.5))+y.^(2-y.^(0.5));
[xsol,ysol] = vpasolve(diff(f,x) + diff(f,y) == 0, [x,y], [1 3; 1 3]);
zsol = subs(f,[x,y],[xsol,ysol]);
% plot results
fsurf(f)
hold on
scatter3(double(xsol),double(ysol),double(zsol),'or','LineWidth',2,'MarkerFaceColor','r')
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!