Why neural network gives negative output ?

1 visualización (últimos 30 días)
Harsha M V
Harsha M V el 31 de Mzo. de 2019
Comentada: Greg Heath el 4 de Abr. de 2019
I have 15000 dataset, 6 inputs and 12 outputs. Using feedforward net, I get training, validation, test and over all regression above 95%.
But when I check trained net with new inputs, I get negative values in the outputs.
(There is no negative values in the dataset)
What is the reason for it?
What could be the worng?
What should I do to overcome this issue?

Respuesta aceptada

Greg Heath
Greg Heath el 1 de Abr. de 2019
How different is the new data (e.g., Mahalanobis distance)?
If you know the true outputs, how do the error rates compare?
If you want positive outputs, use a sigmoid in the output layer.
Hope this helps.
*Thank you for formally accepting my answer*
Greg
  4 comentarios
Harsha M V
Harsha M V el 4 de Abr. de 2019
Yes, the mahal distance is 6.5
Greg Heath
Greg Heath el 4 de Abr. de 2019
It is not uncommon for new data to lie outside the bounds of training data.
Take into account whether negative values have meaning.
If not, use sigmoids in the output layer.
Greg

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by